【題目】在平面直角坐標系中,一次函數(shù)y=ax+b(a≠0)的圖形與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH= ,點B的坐標為(m,﹣2).
(1)求△AHO的周長;
(2)求該反比例函數(shù)和一次函數(shù)的解析式.
【答案】
(1)
解:由OH=3,tan∠AOH= ,得
AH=4.即A(﹣4,3).
由勾股定理,得
AO= =5,
△AHO的周長=AO+AH+OH=3+4+5=12
(2)
解:將A點坐標代入y= (k≠0),得
k=﹣4×3=﹣12,
反比例函數(shù)的解析式為y= ;
當y=﹣2時,﹣2= ,解得x=6,即B(6,﹣2).
將A、B點坐標代入y=ax+b,得
,
解得 ,
一次函數(shù)的解析式為y=﹣ x+1.
【解析】(1)根據(jù)正切函數(shù),可得AH的長,根據(jù)勾股定理,可得AO的長,根據(jù)三角形的周長,可得答案;(2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.本題考查了反比例函數(shù)與一次函數(shù)的交點問題,利用待定系數(shù)法是解題關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】某市招聘教師,對應聘者分別進行教學能力、科研能力、組織能力三項測試,其中甲、乙兩人的成就如下表:(單位:分)
項目 | 教學能力 | 科研能力 | 組織能力 |
甲 | 86 | 93 | 73 |
乙 | 81 | 95 | 79 |
(1)根據(jù)實際需要,將閱讀能力、科研能力、組織能力三項測試得分按5:3:2的比確定最后成績,若按此成績在甲、乙兩人中錄用一人,誰將被錄用?
(2)按照(1)中的成績計算方法,將每位應聘者的最后成績繪制成如圖所示的頻數(shù)分布直方圖(每組分數(shù)段均包含左端數(shù)值,不包含右端數(shù)值),并決定由高分到低分錄用8人.甲、乙兩人能否被錄用?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,AC交⊙O于點E,∠BAC=45°,給出以下五個結(jié)論:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正確的序號是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從﹣3,﹣1, ,1,3這五個數(shù)中,隨機抽取一個數(shù),記為a,若數(shù)a使關(guān)于x的不等式組 無解,且使關(guān)于x的分式方程 ﹣ =﹣1有整數(shù)解,那么這5個數(shù)中所有滿足條件的a的值之和是( 。
A.﹣3
B.﹣2
C.﹣
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】質(zhì)地均勻的骰子六個面分別刻有1到6的點數(shù),擲兩次骰子,得到向上一面的兩個點數(shù),則下列事件中,發(fā)生可能性最大的是( )
A.點數(shù)都是偶數(shù)
B.點數(shù)的和為奇數(shù)
C.點數(shù)的和小于13
D.點數(shù)的和小于2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:
(1)在同一平面內(nèi),不相交的兩條直線一定平行.(2)在同一平面內(nèi),不相交的兩條線段一定平行.(3)相等的角是對頂角.(4)兩條直線被第三條直線所截,同位角相等.(5)兩條平行線被第三條直線所截,一對內(nèi)錯角的角平分線互相平行.其中,正確說法的個數(shù)是( )
A. 1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正五邊形的邊長為2,連結(jié)對角線AD,BE,CE,線段AD分別與BE和CE相交于點M,N.給出下列結(jié)論:①∠AME=108°;②AN2=AMAD;③MN=3﹣ ;④S△EBC=2 ﹣1.其中正確結(jié)論的個數(shù)是( 。
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com