如圖所示,在△ABC,∠BAC=120°,AB的垂直平分線交BC于點D,點AC的垂直平分線交BC于E點,則∠DAE=   
【答案】分析:根據(jù)線段的垂直平分線得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,根據(jù)三角形的內(nèi)角和定理求出∠B+∠C的度數(shù),求出∠BAD+∠CAE的度數(shù)即可得到答案.
解答:解:∵點D、E分別是AB、AC邊的垂直平分線與BC的交點,
∴AD=BD,AE=CE,
∴∠B=∠BAD,∠C=∠CAE,
∵∠BAC+∠B+∠C=180°,∠BAC=120°,
∴∠B+∠C=60°,
∴∠BAD+∠CAE=60°,
∴∠DAE=∠BAC-(∠BAD+∠CAE)=60°,
故答案為:60°.
點評:本題主要考查對等腰三角形的性質(zhì),三角形的內(nèi)角和定理,線段的垂直平分線等知識點的理解和掌握,能綜合運用這些性質(zhì)進行計算是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作AF∥BC交ED的延長線于點F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點在BC上從B點向C點運動(不包括點C),點P的運動速度為2cm∕s;Q點在AC上從C點向點A運動(不包括點A),運動速度為5cm∕s,若點P、Q分別從B、C同時運動,請解答下面的問題,并寫出主要過程.
(1)經(jīng)過多長時間后,P、Q兩點的距離為5
2
cm?
(2)經(jīng)過多長時間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習冊答案