【題目】我市某社區(qū)今年準(zhǔn)備新建一養(yǎng)老中心,其中規(guī)劃建造三類養(yǎng)老專用房間共100間,這三類養(yǎng)老專用房間分別為單人間(1個(gè)養(yǎng)老床位),雙人間(2個(gè)養(yǎng)老床位),三人間(3個(gè)養(yǎng)老床位),因?qū)嶋H需要,單人間房間數(shù)在10至30之間(包括10和30),且雙人間的房間數(shù)是單人間的2倍,設(shè)規(guī)劃建造單人間的房間數(shù)為.
(1)根據(jù)題意,填寫下表:
單人間的房間數(shù) | 10 | … | … | 30 | |
雙人間的房間數(shù) | _________ | … | … | 60 | |
三人間的房間數(shù) | 70 | … | _________ | … | _________ |
養(yǎng)老床位數(shù) | 260 | … | _________ | … | _________ |
(2)若該養(yǎng)老中心建成后可提供養(yǎng)老床位200個(gè),求的值;
(3)求該養(yǎng)老中心建成后最多提供養(yǎng)老床位多少個(gè)?最少提供養(yǎng)老床位多少個(gè)?
【答案】(1)20;;;10;180 (2)25 (3)260個(gè);180個(gè)
【解析】
(1)根據(jù)雙人間的房間數(shù)是單人間的2倍可得雙人間是單人甲的房間數(shù)的兩倍,再根據(jù)總需要100個(gè)房間數(shù)即可推出三人間和床位數(shù)的答案.
(2)規(guī)劃建造單人間的房間數(shù)為t(10≤t≤30),則建造雙人間的房間數(shù)為2t,三人間的房間數(shù)為100-3t,根據(jù)“可提供的床位數(shù)=單人間數(shù)+2倍的雙人間數(shù)+3倍的三人間數(shù)”即可得出關(guān)于t的一元一次方程,解方程即可得出結(jié)論;
(3)設(shè)該養(yǎng)老中心建成后能提供養(yǎng)老床位y個(gè),根據(jù)“可提供的床位數(shù)=單人間數(shù)+2倍的雙人間數(shù)+3倍的三人間數(shù)”即可得出y關(guān)于t的函數(shù)關(guān)系式,根據(jù)一次函數(shù)的性質(zhì)結(jié)合t的取值范圍,即可得出結(jié)論.
解:(1)雙人間的房間數(shù):;
三人間的房間數(shù):=;
養(yǎng)老床位數(shù):=;
三人間的房間數(shù):=10;
養(yǎng)老床位數(shù):=180.
(2)由題意得:,解得:,
∵,符合題意.
答:的值是25.
(3)設(shè)該養(yǎng)老中心建成后能提供養(yǎng)老床位個(gè),
由題意得:,
∵,∴隨的增大而減小.
當(dāng)時(shí),的最大值為(個(gè)),
當(dāng)時(shí),的最小值為(個(gè)).
答:該養(yǎng)老中心建成后最多提供養(yǎng)老床位260個(gè),最少提供養(yǎng)老床位180個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°后得到正方形,以此方式,繞點(diǎn)O旋轉(zhuǎn)2018次得到正方形,如果點(diǎn)A的坐標(biāo)為(1,0),那么那么點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,直徑AB=10,tanA=.
(1)求弦AC的長;
(2)D是AB延長線上一點(diǎn),且AB=kBD,連接CD,若CD與⊙O相切,求k的值;
(3)若動(dòng)點(diǎn)P以3cm/s的速度從A點(diǎn)出發(fā),沿AB方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q以cm/s的速度從B點(diǎn)出發(fā)沿BC方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t (0<t<),連結(jié)PQ.當(dāng)t為何值時(shí),△BPQ為Rt△?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校初一、初二年級(jí)各有500名學(xué)生,為了解兩個(gè)年級(jí)的學(xué)生對(duì)消防安全知識(shí)的掌握情況,學(xué)校從初一、初二年級(jí)各隨機(jī)抽取20名學(xué)生進(jìn)行消防安全知識(shí)測試,滿分100分,成績整理分析過程如下,請(qǐng)補(bǔ)充完整:
(收集數(shù)據(jù))
初一年級(jí)20名學(xué)生測試成績統(tǒng)計(jì)如下:
78 56 74 81 95 75 87 70 75 90 75 79 86 60 54 80 66 69 83 97
初二年級(jí)20名學(xué)生測試成績不低于80,但是低于90分的成績?nèi)缦拢?/span>
83 86 81 87 80 81 82
(整理數(shù)據(jù))按照如下分?jǐn)?shù)段整理、描述兩組樣本數(shù)據(jù):
成績 | 0 | ||||
初一 | 2 | 3 | 7 | 5 | 3 |
初二 | 0 | 4 | 5 | 7 | 4 |
(分析數(shù)據(jù))兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:
年級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
初一 | 76.5 | 76.5 | 132.5 | |
初二 | 79.2 | 74 | 100.4 |
(1)直接寫出,的值;
(2)根據(jù)抽樣調(diào)查數(shù)據(jù),估計(jì)初一年級(jí)消防安全知識(shí)測試成績在70分及其以上的大約有多少人?
(3)通過以上分析,你認(rèn)為哪個(gè)年級(jí)對(duì)消防安全知識(shí)掌握得更好,并說明推斷的合理性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長都是1的小正方形組成的網(wǎng)格中,均為格點(diǎn),線段,相交于點(diǎn).
(1)________;
(2)設(shè),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)的角,點(diǎn)的對(duì)應(yīng)點(diǎn)為,請(qǐng)你借助網(wǎng)格,使用無刻度的直尺畫出點(diǎn),并簡要說明你是怎么畫的___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交與A(4,-2),B(-2,n)兩點(diǎn),與軸交與點(diǎn)C.
(1)求,n的值;
(2)請(qǐng)直接寫出不等式的解集;
(3)點(diǎn)A關(guān)于軸對(duì)稱得到點(diǎn)A’,連接A’B,A’C,求△A’BC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》里有一道著名算題:“今有上禾三秉,益實(shí)六斗,當(dāng)下禾十秉.下禾五秉,益實(shí)一斗,當(dāng)上禾二乘、問上、下禾實(shí)一乘各幾何?”大意是:3捆上等谷子結(jié)出的糧食,再加.上六斗,相當(dāng)于10捆下等谷子結(jié)出的糧食.5捆下等谷子結(jié)出的糧食,再加上一斗,相當(dāng)于2捆上等谷子結(jié)出的糧食.問:上等谷子和下等谷子每捆能結(jié)出多少斗糧食?請(qǐng)解答上述問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊在正方形的邊上,連結(jié)、.
(1)觀察猜想與之間的大小關(guān)系,并證明你的結(jié)論;
(2)圖中是否存在通過旋轉(zhuǎn)能夠互相重合的兩個(gè)三角形?若存在,說出旋轉(zhuǎn)過程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】"桃花流水窅然去,別有天地非人間."桃花園景點(diǎn)2017年三月共接待游客萬人,2018年三月比2017年三月旅游人數(shù)增加5%,已知2017年三月至2019年三月欣賞桃花的游客人數(shù)平均年增長率為8%,設(shè)2019年三月比2018年三月游客人數(shù)增加,則可列方程為( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com