【題目】平面直角坐標(biāo)系中有正方形AOBC,O為坐標(biāo)原點(diǎn),點(diǎn)A、B分別在y軸、x軸正半軸上,點(diǎn)P、E、F分別為邊BC、AC、OB上的點(diǎn),EF⊥OP于M.
(1)如圖1,若點(diǎn)E與點(diǎn)A重合,點(diǎn)A坐標(biāo)為(0,8),OF=3,求P點(diǎn)坐標(biāo);
(2)如圖2,若點(diǎn)E與點(diǎn)A重合,且P為邊BC的中點(diǎn),求證:CM=2CP;
(3)如圖3,若點(diǎn)M為線段OP的中點(diǎn),連接AB交EF于點(diǎn)N,連接NP,試探究線段OP與NP的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】(1);(2)證明見(jiàn)解析;(3),證明見(jiàn)解析
【解析】
(1)證明△OAF≌△BOP(ASA),得出OF=PB=3,則P點(diǎn)坐標(biāo)可求出;
(2)取的中點(diǎn),連接交于,連接,利用,證得四邊形為平行四邊形,然后根據(jù)直角三角形斜邊中線等于斜邊的一半求得MN=AN,用HL定理證明,從而求得為的垂直平分線,使問(wèn)題得解;
(3)過(guò)點(diǎn)作交于點(diǎn),交于點(diǎn),連接,由矩形和正方形的性質(zhì)求得為等腰直角三角形,從而求得,,利用垂直平分線的性質(zhì)求得ON=NP,然后根據(jù)HL定理證得,然后利用全等三角形的性質(zhì)求得,即為等腰直角三角形,從而使問(wèn)題得解.
解:∵A(0,8),
∴OA=8,
∵EF⊥OP于M,
∴∠OMF=90°,
∴∠MOF+∠OFM=90°,
∵∠OFM+∠OAF=90°,
∴∠MOF=∠OAF.
∵OA=OB,∠AOF=∠OBP,
∴△OAF≌△BOP(ASA),
∴OF=PB=3,
∴P(8,3);
(2)取的中點(diǎn),連接交于,連接
∵在正方形AOBC中,OA=BC=AC,且點(diǎn)P為BC中點(diǎn)
∴,
∴,
∴四邊形為平行四邊形
∴
∵EF⊥OP
∴
又∵N為OA中點(diǎn)
∴在Rt△AOM中,MN=AN
在Rt△AHN和Rt△MHN中,MN=AN,NH=NH
∴
∴,為的垂直平分線
∴
(3)過(guò)點(diǎn)作交于點(diǎn),交于點(diǎn),連接
由題意可知四邊形AHGC是矩形且四邊形AOBC為正方形
∴HG=AC=OA
在正方形AOBC中,∠OAB=45°
∴為等腰直角三角形
∴,
由EF⊥OP于M且M為OP的中點(diǎn)
∴MN垂直平分OP
∴ON=NP
在Rt△ONH和Rt△NPG中
∴
∴,,
∵
∴
∴
∴為等腰直角三角形
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB、AC的垂直平分線l1、l2相交于點(diǎn)O,若∠BAC等于82°,則∠OBC等于( 。
A. 8°B. 9°C. 10°D. 11°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于點(diǎn)D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長(zhǎng)為( )
A. 4cm B. 6cm C. 8cm D. 10cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圖①中的正方形中剪去一個(gè)邊長(zhǎng)為2a+b的正方形,將剩余的部分按圖②的方式拼成一個(gè)長(zhǎng)方形.
(1)求剪去正方形的面積;
(2)求拼成的長(zhǎng)方形的長(zhǎng)、寬以及它的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),“在初中數(shù)學(xué)教學(xué)候總使用計(jì)算器是否直接影響學(xué)生計(jì)算能力的發(fā)展”這一問(wèn)題受到了廣泛關(guān)注,為此,某校隨機(jī)調(diào)查了n名學(xué)生對(duì)此問(wèn)題的看法(看法分為三種:沒(méi)有影響,影響不大,影響很大),并將調(diào)查結(jié)果 繪制成如下不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖表提供的信息,解答下列問(wèn)題:
n名學(xué)生對(duì)使用計(jì)算器影響計(jì)算能力的發(fā)展看法人數(shù)統(tǒng)計(jì)表
看法 | 沒(méi)有影響 | 影響不大 | 影響很大 |
學(xué)生人數(shù)(人) | 40 | 60 | m |
(1)求n的值;
(2)統(tǒng)計(jì)表中的m= ;
(3)估計(jì)該校1800名學(xué)生中認(rèn)為“影響很大”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位同學(xué)在一次實(shí)驗(yàn)中統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,給出的統(tǒng)計(jì)圖如圖所示,則 符合這一結(jié)果的實(shí)驗(yàn)可能是( )
A. 擲一枚正六面體的骰子,出現(xiàn)6點(diǎn)的概率
B. 擲一枚硬幣,出現(xiàn)正面朝上的概率
C. 任意寫(xiě)出一個(gè)整數(shù),能被2整除的概率
D. 一個(gè)袋子中裝著只有顏色不同,其他都相同的兩個(gè)紅球和一個(gè)黃球,從中任意取出一個(gè)是黃球的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D為AB上一點(diǎn),過(guò)D點(diǎn)作AB垂線,交AC于E,交BC的延長(zhǎng)線于F.
(1)∠1與∠B有什么關(guān)系?說(shuō)明理由.
(2)若BC=BD,請(qǐng)你探索AB與FB的數(shù)量關(guān)系,并且說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(0,a),B(b,a),且a、b滿足(a﹣2)2+|b﹣4|=0,現(xiàn)同時(shí)將點(diǎn)A,B分別向下平移2個(gè)單位,再向左平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,AB.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABCD;
(2)在y軸上是否存在一點(diǎn)M,連接MC,MD,使S△MCD=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo),若不存在,試說(shuō)明理由;
(3)點(diǎn)P是直線BD上的一個(gè)動(dòng)點(diǎn),連接PA,PO,當(dāng)點(diǎn)P在BD上移動(dòng)時(shí)(不與B,D重合),直接寫(xiě)出∠BAP、∠DOP、∠APO之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線:與軸相交于B,與軸相交于點(diǎn)A.直線:經(jīng)過(guò)原點(diǎn),并且與直線相交于C點(diǎn).
(1)求ΔOBC的面積;
(2)如圖2,在軸上有一動(dòng)點(diǎn)E,連接CE.問(wèn)CE+BE是否有最小值,如果有,求出相應(yīng)的點(diǎn)E的坐標(biāo)及CE+BE的最小值;如果沒(méi)有,請(qǐng)說(shuō)明理由;
(3)如圖3,在(2)的條件下,以CE為一邊作等邊ΔCDE,D點(diǎn)正好落在軸上.將ΔDCE繞點(diǎn)D順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角度為(0°≤≤360),記旋轉(zhuǎn)后的三角形為ΔDCE′,點(diǎn)C,E的對(duì)稱(chēng)點(diǎn)分別為C′,E′.在旋轉(zhuǎn)過(guò)程中,設(shè)C′E′所在的直線與直線相交于點(diǎn)M,與軸正半軸相交于點(diǎn)N.當(dāng)ΔOMN為等腰三角形時(shí),求線段ON的長(zhǎng)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com