【題目】如圖,在ABC中,AD為∠BAC的平分線,DEABE,DFACF,

(1)證明AE=AF;

(2)若ABC面積是36cm2,AB=10cm,AC=8cm,求DE的長.

【答案】(1)見解析;(2)4

【解析】

本題主要考察角平分線的性質(zhì)定理和三角形面積的求法,可以根據(jù)角平分線的性質(zhì)定理結(jié)合全等進行證明.

(1)證明:∵在ABC中,AD為∠BAC的平分線,DEAB,DFAC,

∴∠EAD=FAD,AED=AFD=90°,AD=AD

∴△ADEADF,

AE=AF;

(2)解:∵在ABC中,AD為∠BAC的平分線,DEAB,DFAC,

DE=DF,

∵△ABC面積是36cm2,AB=10cm,AC=8cm,

SABC=SADB+SACD=ABDE+ACDF=DE(AB+AC)=×DE×(10+8)=9DE=36,

DE=4(cm).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知邊長為m的正方形面積為12,則下列關(guān)于m的說法中:①m2是有理數(shù);②m的值滿足m2120;③m滿足不等式組;④m12的算術(shù)平方根. 正確有幾個( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某景區(qū)的三個景點AB、C在同一線路上甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙乘景區(qū)觀光車先到景點B,B處停留一段時間后再步行到景點C,甲、乙兩人同時到達景點C甲、乙兩人距景點A的路程y()與甲出發(fā)的時間x()之間的函數(shù)圖象如圖所示

1乙步行的速度為_ __/

2求乙乘景區(qū)觀光車時yx之間的函數(shù)關(guān)系式

3甲出發(fā)多長時間與乙第一次相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=90°,CE⊥BD于E,AB=EC.

(1)求證:△ABD≌△ECB;

(2)若∠EDC=65°,求∠ECB的度數(shù);

(3)若AD=3,AB=4,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形EFGH的頂點在邊長為2的正方形的邊上.若設AE=x,正方形EFGH的面積為y,則y與x的函數(shù)關(guān)系為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,AB的垂直平分線DE分別交ABACD、E

1)若AC=12,BC=10,求EBC的周長;

2)若∠A=40°,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,的平分線交AD于點E,交BA的延長線于點F,,,則AF的長度是  

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知AEAB,AFAC,AE=AB,AF=AC.求證:(1)EC=BF;(2)ECBF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

情形展示:

情形一:如圖,在中,沿等腰三角形ABC的頂角的平分線折疊,若點B與點C重合,則稱的“好角”,如圖,在中,先沿的平分線折疊,剪掉重復部分,再將余下部分沿的平分線折疊,若點與點C重合,則稱的“好角”.

情形二:如圖,在中,先沿的平分線折疊,剪掉重復部分,再將余下部分沿的平分線折疊,剪掉重復部分重復折疊n次,最終若點與點C重合,則稱的“好角”,探究發(fā)現(xiàn):不妨設

如圖,若的“好角”,則的數(shù)量關(guān)系是:______

如圖,若的“好角”,則的數(shù)量關(guān)系是:______

如圖,若的“好角”,則的數(shù)量關(guān)系是:______

應用提升:

如果一個三角形的三個角分別為,,,我們發(fā)現(xiàn)的兩個角都是此三角形的“好角”;如果有一個三角形,它的三個角均是此三角形的“好角”,且已知最小的角是,求另外兩個角的度數(shù).

查看答案和解析>>

同步練習冊答案