將一張紙按如圖的方式折疊,BC、BD為折痕,則∠CBD的度數(shù)為( ).

A.80° B.90° C.100° D.110°

B.

【解析】

試題分析:∵折疊前后兩圖形是全等形,∴∠CBD=180°×=90°.

故選:B.

考點(diǎn):全等三角形的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在函數(shù)y=(x>0)的圖象上有點(diǎn)P1,P2,P3,…,Pn,Pn+1,點(diǎn)P1的橫坐標(biāo)為2,且后面每個(gè)點(diǎn)的橫坐標(biāo)與它前面相鄰點(diǎn)的橫坐標(biāo)的差都是2,過點(diǎn)P1,P2,P3,…,Pn,Pn+1分別作x軸,y軸的垂線段,構(gòu)成若干個(gè)矩形,如圖所示,將圖中陰影部分的面積從左至右依次記為S1,S2,S3,…,Sn,則S1=          ,Sn=          .(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某種商品的進(jìn)價(jià)為每件50元,售價(jià)為每件60元,每個(gè)月可賣出200件;如果每件商品的售價(jià)上漲1元,則每個(gè)月少賣10件(每件售價(jià)不能高于72元),設(shè)每件商品的售價(jià)上漲x元(x為整數(shù)),每個(gè)月的銷售利潤為y元.

(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;

(2)每件商品的售價(jià)定為多少時(shí)每個(gè)月可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年福建省七年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

a是不為1的有理數(shù),我們把稱為a的差倒數(shù).已知a1=,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…,依此類推,則a10= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年福建省七年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

方程2x﹣4 = 0的解是x = .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年福建省七年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

一個(gè)兩位數(shù),十位數(shù)字是a,個(gè)位數(shù)字是b,這個(gè)兩位數(shù)可表示為( ).

A.10a+b B.10b+a C.a(chǎn)b D.ba

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價(jià)與銷量的相關(guān)信息如下表:

時(shí)間x(天)

1≤x<50

50≤x≤90

售價(jià)(元/件)

x+40

90

每天銷量(件)

200-2x

已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的每天利潤為y元.

(1)求y與x的函數(shù)關(guān)系式;

(2)問銷售該商品第幾天時(shí),每天銷售利潤最大,最大利潤是多少?

(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4 800元?請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年福建省福安市八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知,一次函數(shù)y=kx+b的圖象如圖所示,下列結(jié)論正確的是( ).

A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省高密市九年級(jí)下學(xué)期開學(xué)考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分).某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.

(1)求出每天的銷售利潤y(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;

(2)求出銷售單價(jià)為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?

(3)如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)

查看答案和解析>>

同步練習(xí)冊(cè)答案