【題目】數(shù)學(xué)活動(dòng)課上,某學(xué)習(xí)小組對(duì)有一內(nèi)角為120°的平行四邊形ABCD(∠BAD120°)進(jìn)行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點(diǎn)始終與點(diǎn)C重合,較短的直角邊和斜邊所在的兩直線分別交線段ABAD于點(diǎn)E,F(不包括線段的端點(diǎn)).

1)初步嘗試

如圖1,若ADAB,試猜想線段AE、AFAC之間的數(shù)量關(guān)系;

2)類比發(fā)現(xiàn)

如圖2,若AD2AB,過(guò)點(diǎn)CCHAD于點(diǎn)H,求的值;

3)深入探究

如圖3,若AD4AB,探究得:的值為常數(shù)t,則t   

【答案】(1)AE+AFAC;(2);(3).

【解析】

1)先證明△ABC,△ACD都是等邊三角形,再證明∠BCE=∠ACF,從而可證得△BCE≌△ACF,進(jìn)而證得BEAF,由此即可解決問(wèn)題.
2)設(shè)DHx,由題意,CD2x,CH,由△ACE∽△HCF,得 ,由此即可得出答案.
3)作CNADN,CMBAM,CMAD交于點(diǎn)H.先證明△CFN∽△CEM,得 ,由ABCMADCN,AD4AB,推出CM4CN,所以,設(shè)CNa,FNb,則CM4a,EM4b,想辦法求出AC,AE4AF即可解決問(wèn)題.

解:(1AE+AFAC; 理由如下:

四邊形ABCD是平行四邊形,∠BAD120°

∴∠D∠B60°,

四邊形ABCD是菱形,

∴ADAB,

∴△ABC△ACD都是等邊三角形,

∴∠B∠CAD60°,∠ACB60°BCAC

∵∠ECF60°,

∴∠BCE+∠ACE∠ACF+∠ACE60°,

∴∠BCE∠ACF,

△BCE△ACF中,,

∴△BCE≌△ACFASA).

∴BEAF,

∴AE+AFAE+BEABAC

故答案為:AE+AFAC;

2)設(shè)DHx,由由題意,CD2x,CH,

∴AD2AB4x,

∴AHADDH3x,

∵CH⊥AD,

∴AC,

∴AC2+CD2AD2,

∴∠ACD90°,

∴∠BAC∠ACD90°,

∴∠CAD30°,

∴∠ACH60°,

∵∠ECF60°,

∴∠HCF∠ACE,

∴△ACE∽△HCF

,

3,

理由如下:

如圖,作CN⊥ADN,CM⊥BAM,CMAD交于點(diǎn)H

∵∠ECF+∠EAF180°,

∴∠AEC+∠AFC180°

∵∠AFC+∠CFN180°,

∴∠CFN∠AEC,∵∠M∠CNF90°

∴△CFN∽△CEM,

∵ABCMADCN,AD4AB

∴CM4CN,

,

設(shè)CNa,FNb,則CM4a,EM4b

∵∠MAH60°,∠M90°,

∴∠AHM∠CHN30°,

∴HC2a,HM2a,HNa,

∴AMAH,

∴AC ,

AE+4AF=(EMAM+4AH+HNFN)=EMAM+4AH+4HN4FN4AH+4HNAM,

∴t,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是△ABC的外接圓,BCO的直徑,D是劣弧的中點(diǎn)BDAC于點(diǎn)E

1)求證:AD2DEDB

2)若BC5,CD,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有下列結(jié)論:①;②;③;④;⑤.其中,正確結(jié)論是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果關(guān)于的一元二次方程有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的倍,那么稱這樣的方程為“倍根方程”,例如,一元二次方程的兩個(gè)根是,則方程就是“倍根方程”.

1)若一元二次方程是“倍根方程”,則   

2)若關(guān)于的一元二次方程是“倍根方程”,則,之間的關(guān)系為   

3)若是“倍根方程”,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知 ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-1,1), B(-3,1),C(-1,4).

①畫(huà)出ABC關(guān)于y軸對(duì)稱的A1B1C1;

②將ABC繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后得到A2BC2請(qǐng)?jiān)趫D中畫(huà)出A2BC2 , 并求出線段BC旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(m為常數(shù),m>1,x>0)的圖象經(jīng)過(guò)點(diǎn)P(m,1)Q(1,m),直線PQx軸,y軸分別交于C,D兩點(diǎn),點(diǎn)M(x,y)是該函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M分別作x軸和y軸的垂線,垂足分別為A,B.

(1)求∠OCD的度數(shù);

(2)當(dāng)m=3,1<x<3時(shí),存在點(diǎn)M使得OPM∽△OCP,求此時(shí)點(diǎn)M的坐標(biāo);

(3)當(dāng)m=5時(shí),矩形OAMBOPQ的重疊部分的面積能否等于4.1?請(qǐng)說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰三角形ABCBAC=120°,AB=AC=2,點(diǎn)DBC邊上的一個(gè)動(dòng)點(diǎn)(不與BC重合),AC上取一點(diǎn)E使∠ADE=30°

1)求證ABD∽△DCE;

2)設(shè)BD=x,AE=y,y關(guān)于x的函數(shù)關(guān)系式并寫(xiě)出自變量x的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為落實(shí)素質(zhì)教育要求,促進(jìn)學(xué)生全面發(fā)展,我市某中學(xué)2016年投資11萬(wàn)元新增一批電腦,計(jì)劃以后每年以相同的增長(zhǎng)率進(jìn)行投資,2018年投資18.59萬(wàn)元.

1)求該學(xué)校為新增電腦投資的年平均增長(zhǎng)率;

2)從2016年到2018年,該中學(xué)三年為新增電腦共投資多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,二次函數(shù)的圖象經(jīng)過(guò)A3,3),與x軸正半軸交于B點(diǎn),與y軸交于C點(diǎn),ABC的外接圓恰好經(jīng)過(guò)原點(diǎn)O.

1)求B點(diǎn)的坐標(biāo)及二次函數(shù)的解析式;

2)拋物線上一點(diǎn)Qm,m+3),(m為整數(shù)),點(diǎn)M為△ABC的外接圓上一動(dòng)點(diǎn),求線段QM長(zhǎng)度的范圍;

3)將△AOC繞平面內(nèi)一點(diǎn)P旋轉(zhuǎn)180°至△A'O'C'(點(diǎn)O'O為對(duì)應(yīng)點(diǎn)),使得該三角形的對(duì)應(yīng)點(diǎn)中的兩個(gè)點(diǎn)落在的圖象上,求出旋轉(zhuǎn)中心P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案