【題目】如圖,在平面直角坐標(biāo)系中,⊙P的圓心坐標(biāo)是(3,a)(a>3),半徑為3,函數(shù)y=x的圖象被⊙P截得的弦AB的長為 ,則a的值是( )
A.4
B.
C.
D.
【答案】B
【解析】解:作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結(jié)PB,如圖, ∵⊙P的圓心坐標(biāo)是(3,a),
∴OC=3,PC=a,
把x=3代入y=x得y=3,
∴D點(diǎn)坐標(biāo)為(3,3),
∴CD=3,
∴△OCD為等腰直角三角形,
∴△PED也為等腰直角三角形,
∵PE⊥AB,
∴AE=BE= AB= ×4 =2 ,
在Rt△PBE中,PB=3,
∴PE= ,
∴PD= PE= ,
∴a=3+ .
故選:B.
PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結(jié)PB,由于OC=3,PC=a,易得D點(diǎn)坐標(biāo)為(3,3),則△OCD為等腰直角三角形,△PED也為等腰直角三角形.由PE⊥AB,根據(jù)垂徑定理得AE=BE= AB=2 ,在Rt△PBE中,利用勾股定理可計算出PE=1,則PD= PE= ,所以a=3+ .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax+bx-3(a≠0)與x軸交于點(diǎn)
A(-2,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)P從A點(diǎn)出發(fā),在線段AB上以每秒3個單位長度的速度向B點(diǎn)運(yùn)動,同時點(diǎn)Q從B點(diǎn)出發(fā),在線段BC上以每秒1個單位長度的速度向C點(diǎn)運(yùn)動,其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個也停止運(yùn)動,當(dāng)△PBQ存在時,求運(yùn)動多少秒使△PBQ的面積最大,最大面積是多少?
(3)當(dāng)△PBQ的面積最大時,在BC下方的拋物線上存在點(diǎn)M,使 : =5:2,求M點(diǎn)坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為6的正三角形紙片ABC按如下順序進(jìn)行兩次折疊,展平后,得折痕AD,BE(如圖①),點(diǎn)O為其交點(diǎn).
(1)探求AO到OD的數(shù)量關(guān)系,并說明理由;
(2)如圖②,若P,N分別為BE,BC上的動點(diǎn).
(Ⅰ)當(dāng)PN+PD的長度取得最小值時,求BP的長度;
(Ⅱ)如圖③,若點(diǎn)Q在線段BO上,BQ=1,則QN+NP+PD的最小值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形ABCD中,ADBC,AC、BD相交于點(diǎn)O,AB⊥AC,AD=CD,AB=3,BC=5.求:
(1)tan∠ACD的值;
(2)梯形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長線于點(diǎn)F,BG⊥AE,垂足為G,若BG= ,則△CEF的面積是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,H是BC邊的中點(diǎn),連結(jié)DH與BE相交于點(diǎn)G.
(1)求證:BF=AC;
(2)求證:CE= BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD與EFGH均為正方形,點(diǎn)B、F在函數(shù)y= (x>0)的圖象上,點(diǎn)G、C在函數(shù)y=﹣ (x<0)的圖象上,點(diǎn)A、D在x軸上,點(diǎn)H、E在線段BC上,則點(diǎn)G的縱坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動品牌專賣店準(zhǔn)備購進(jìn)甲、乙兩種運(yùn)動鞋.其中甲、乙兩種運(yùn)動鞋的進(jìn)價和售價如下表.已知購進(jìn)60雙甲種運(yùn)動鞋與50雙乙種運(yùn)動鞋共用10000元
運(yùn)動鞋價格 | 甲 | 乙 |
進(jìn)價(元/雙) | m | m﹣20 |
售價(元/雙) | 240 | 160 |
(1)求m的值;
(2)要使購進(jìn)的甲、乙兩種運(yùn)動鞋共200雙的總利潤(利潤=售價﹣進(jìn)價)超過21000元,且不超過22000元,問該專賣店有幾種進(jìn)貨方案?
(3)在(2)的條件下,專賣店準(zhǔn)備決定對甲種運(yùn)動鞋每雙優(yōu)惠a(50<a<70)元出售,乙種運(yùn)動鞋價格不變.那么該專賣店要獲得最大利潤應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,C、D是半圓的三等分點(diǎn),延長AC,BD交于點(diǎn)E.
(1)求∠E的度數(shù);
(2)點(diǎn)M為BE上一點(diǎn),且滿足EMEB=CE2 , 連接CM,求證:CM為⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com