【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn)A,B,C,其中AB=2,BC=1,如圖所示,設(shè)點(diǎn)A,B,C所對(duì)應(yīng)數(shù)的和是p.
(1)若以B為原點(diǎn),寫(xiě)出點(diǎn)A,C所對(duì)應(yīng)的數(shù),并計(jì)算p的值;若以C為原點(diǎn),p又是多少?
(2)若原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且CO=28,求p.

【答案】
(1)解:若以B為原點(diǎn),則C表示1,A表示﹣2,

∴p=1+0﹣2=﹣1;

若以C為原點(diǎn),則A表示﹣3,B表示﹣1,

∴p=﹣3﹣1+0=﹣4


(2)解:若原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且CO=28,則C表示﹣28,B表示﹣29,A表示﹣31,

∴p=﹣31﹣29﹣28=﹣88


【解析】(1)根據(jù)以B為原點(diǎn),則C表示1,A表示﹣2,進(jìn)而得到p的值;根據(jù)以C為原點(diǎn),則A表示﹣3,B表示﹣1,進(jìn)而得到p的值;(2)根據(jù)原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且CO=28,可得C表示﹣28,B表示﹣29,A表示﹣31,據(jù)此可得p的值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)軸和兩點(diǎn)間的距離的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線;同軸兩點(diǎn)求距離,大減小數(shù)就為之.與軸等距兩個(gè)點(diǎn),間距求法亦如此.平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值.差方相加開(kāi)平方,距離公式要牢記.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,E,FBC上兩點(diǎn),且BE=CF,AF=DE

求證:(1△ABF≌△DCE;

  1. 四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京地鐵1號(hào)線是中國(guó)最早的地鐵線路,2000年實(shí)現(xiàn)了23個(gè)車站的貫通運(yùn)營(yíng),該線西起蘋(píng)果園站,東至四惠東站,全長(zhǎng)約31千米.下表是北京地鐵1號(hào)線首末車時(shí)刻表,開(kāi)往四惠東方向和蘋(píng)果園方向的首車的平均速度均為每小時(shí)60千米,求由蘋(píng)果園站和四惠東站開(kāi)出的首車第一次相遇的時(shí)間.

北京地鐵1號(hào)線首末車時(shí)刻表

車站名稱

往四惠東方向

往蘋(píng)果園方向

首車時(shí)間

末車時(shí)間

首車時(shí)間

末車時(shí)間

蘋(píng)果園

5:10

22:55

--

--

四惠東

--

--

5:05

23:15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程﹣1的步驟如下:

(解析)第一步:﹣1(分?jǐn)?shù)的基本性質(zhì))

第二步:2x﹣1=3(2x+8)﹣3……(①)

第三步:2x﹣1=6x+24﹣3……(②)

第四步:2x﹣6x=24﹣3+1……(③)

第五步:﹣4x=22(④)

第六步:x=﹣……(⑤)

以上解方程第二步到第六步的計(jì)算依據(jù)有:去括號(hào)法則.等式性質(zhì)一.③等式性質(zhì)二.合并同類項(xiàng)法則.請(qǐng)選擇排序完全正確的一個(gè)選項(xiàng)( 。

A. ②①③④② B. ②①③④③ C. ③①②④③ D. ③①④②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩組各有12名學(xué)生,組長(zhǎng)繪制了本組5月份家庭用水量的統(tǒng)計(jì)圖表,如圖, 甲組12戶家庭用水量統(tǒng)計(jì)表

用水量(噸)

4

5

6

9

戶數(shù)

4

5

2

1

比較5月份兩組家庭用水量的中位數(shù),下列說(shuō)法正確的是(

A.甲組比乙組大
B.甲、乙兩組相同
C.乙組比甲組大
D.無(wú)法判斷

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系xOy中,A(0,5),直線x=﹣5與x軸交于點(diǎn)D,直線y=﹣ x﹣ 與x軸及直線x=﹣5分別交于點(diǎn)C,E,點(diǎn)B,E關(guān)于x軸對(duì)稱,連接AB.

(1)求點(diǎn)C,E的坐標(biāo)及直線AB的解析式;
(2)設(shè)面積的和S=S△CDE+S四邊形ABDO , 求S的值;
(3)在求(2)中S時(shí),嘉琪有個(gè)想法:“將△CDE沿x軸翻折到△CDB的位置,而△CDB與四邊形ABDO拼接后可看成△AOC,這樣求S便轉(zhuǎn)化為直接求△AOC的面積不更快捷嗎?”但大家經(jīng)反復(fù)演算,發(fā)現(xiàn)S△AOC≠S,請(qǐng)通過(guò)計(jì)算解釋他的想法錯(cuò)在哪里.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作:如圖,直線AB與CD交于點(diǎn)O,按要求完成下列問(wèn)題.

(1)用量角器量得∠AOC=   度.AB與CD的關(guān)系可記作   

(2)畫(huà)出∠BOC的角平分線OM,∠BOM=∠   =   度.

(3)在射線OM上取一點(diǎn)P,畫(huà)出點(diǎn)P到直線AB的距離PE.

(4)如圖若按“上北下南左西右東”的方位標(biāo)記,請(qǐng)畫(huà)出表示“南偏西30°”的射線OF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某新建成學(xué)校舉行美化綠化校園活動(dòng),九年級(jí)計(jì)劃購(gòu)買A,B兩種花木共100棵綠化操場(chǎng),其中A花木每棵50元,B花木每棵100元.
(1)若購(gòu)進(jìn)A,B兩種花木剛好用去8000元,則購(gòu)買了A,B兩種花木各多少棵?
(2)如果購(gòu)買B花木的數(shù)量不少于A花木的數(shù)量,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買方案使所需總費(fèi)用最低,并求出該購(gòu)買方案所需總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形ABCD中,AB=6,第一次平移長(zhǎng)方形ABCD沿AB的方向向右平移5個(gè)單位,得到長(zhǎng)方形A1B1C1D1,第2次平移將長(zhǎng)方形A1B1C1D1沿A1B1的方向向右平移5個(gè)單位,得到長(zhǎng)方形A2B2C2D2,第n次平移將長(zhǎng)方形An1Bn1Cn1Dn1沿An1Bn1的方向平移5個(gè)單位,得到長(zhǎng)方形AnBnCnDn(n>2),若ABn的長(zhǎng)度為56,則n=_

查看答案和解析>>

同步練習(xí)冊(cè)答案