【題目】如圖所示,某花園護(hù)欄是用直徑為的半圓形條鋼組制而成,且每增加一個(gè)半圓形條鋼,護(hù)欄長(zhǎng)度增加,設(shè)半圓形條鋼的個(gè)數(shù)為(為正整數(shù)),護(hù)欄總長(zhǎng)度為

1)若

①當(dāng)時(shí),y=______

②寫(xiě)出之間的函數(shù)關(guān)系式為_______

2)若護(hù)欄總長(zhǎng)度為,則當(dāng)時(shí),所用半圓形條鋼個(gè)數(shù)為_______

3)若護(hù)欄總長(zhǎng)度不變,則當(dāng)時(shí),用了個(gè)半圓形條鋼;當(dāng)時(shí),用了個(gè)半圓形條鋼.請(qǐng)求出之間的關(guān)系式.

【答案】1)①200;②y=60x+20;(267;(3n=5k+1

【解析】

1)①根據(jù)每增加一個(gè)半圓形條鋼,護(hù)欄長(zhǎng)度增加60cm,第一個(gè)半圓形條鋼直徑為80cm,計(jì)算即可得答案;

②根據(jù)第一個(gè)半圓形條鋼直徑為80cm,每增加一個(gè)半圓形條鋼,護(hù)欄長(zhǎng)度增加,半圓形條鋼的個(gè)數(shù)為x,列式即可得答案;

2)根據(jù)題意可用a、x表示出y,把a=50,y=3380代入可求出x的值,即可的答案,

3)把a=600n;n+k、a=60分別代入(2)中所求關(guān)系式,根據(jù)護(hù)欄總長(zhǎng)度不變列式即可得答案.

1)①∵第一個(gè)半圓形條鋼直徑為80cm,每增加一個(gè)半圓形條鋼,護(hù)欄長(zhǎng)度增加60cm,

80+2×60=200cm

故答案為:200

②∵每增加一個(gè)半圓形條鋼,護(hù)欄長(zhǎng)度增加60cm,半圓形條鋼的個(gè)數(shù)為x,

y=80+60(x-1)=60x+20

故答案為:y=60x+20

2)∵每增加一個(gè)半圓形條鋼,護(hù)欄長(zhǎng)度增加,半圓形條鋼的個(gè)數(shù)為x,

y=80+a(x-1)

當(dāng)a=50,y=3380時(shí),

3380=80+50x-1

解得:x=67,即所用半圓形條鋼個(gè)數(shù)為67個(gè),

故答案為:67

3)當(dāng)a=60時(shí),y=60n+20,

當(dāng)a=50時(shí),y=80+50(n+k-1)

∵護(hù)欄總長(zhǎng)度不變,

60n+20=80+50(n+k-1),

nk之間的關(guān)系式n=5k+1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,已知以ABC的邊ABAC分別向外作等腰直角ABD與等腰直角ACE,∠BAD=CAE=90°,連接BECD相交于點(diǎn)O,ABCD于點(diǎn)F,ACBE于點(diǎn)G,求證:BE=DC,且BEDC

2)探究:若以ABC的邊ABAC分別向外作等邊ABD與等邊ACE,連接BECD相交于點(diǎn)O,ABCD于點(diǎn)F,ACBEG,如圖2,則BEDC還相等嗎?若相等,請(qǐng)證明,若不相等,說(shuō)明理由;并請(qǐng)求出∠BOD的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017湖北省鄂州市,第8題,3分)小東家與學(xué)校之間是一條筆直的公路,早飯后,小東步行前往學(xué)校,圖中發(fā)現(xiàn)忘帶畫(huà)板,停下給媽媽打電話,媽媽接到電話后,帶上畫(huà)板馬上趕往學(xué)校,同時(shí)小東沿原路返回,兩人相遇后,小東立即趕往學(xué)校,媽媽沿原路返回16min到家,再過(guò)5min小東到達(dá)學(xué)校,小東始終以100m/min的速度步行,小東和媽媽的距離y(單位:m)與小東打完電話后的步行時(shí)間t(單位:min)之間的函數(shù)關(guān)系如圖所示,下列四種說(shuō)法:

①打電話時(shí),小東和媽媽的距離為1400米;

②小東和媽媽相遇后,媽媽回家的速度為50m/min;

③小東打完電話后,經(jīng)過(guò)27min到達(dá)學(xué)校;

④小東家離學(xué)校的距離為2900m

其中正確的個(gè)數(shù)是( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)在平面直角坐標(biāo)系中,作出下列各點(diǎn),A(-3,4), B(-3,-2),O(0,0),并把各點(diǎn)連起來(lái).

(2)畫(huà)出ABO先向下平移2個(gè)單位,再向右平移4 個(gè)單位得到的圖形A1B1o1,并直接寫(xiě)出A1坐標(biāo)

(3) 直接寫(xiě)出三角形ABO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個(gè),小穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過(guò)程,下表是摸到白球的頻率折線統(tǒng)計(jì)圖:

(1)請(qǐng)估計(jì):當(dāng)很大時(shí),摸到白球的頻率將會(huì)接近 (精確到0.01);假如你摸一次,你摸到白球的概率

(2)試估算盒子里白、黑兩種顏色的球各有多少只?

(3)在(2)條件下如果要使摸到白球的概率為,需要往盒子里再放入多少個(gè)白球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架,書(shū)中的算法體系至今仍在推動(dòng)著計(jì)算機(jī)的發(fā)展和應(yīng)用.《九章算術(shù)》中記載:今有戶(hù)不知高、廣,竿不知長(zhǎng)、短.橫之不出四尺,從之不出二尺,邪之適出.問(wèn)戶(hù)高、廣、邪各幾何?譯文是:今有門(mén)不知其高、寬,有竿,不知其長(zhǎng)、短,橫放,竿比門(mén)寬長(zhǎng)出尺;豎放,竿比門(mén)高長(zhǎng)出尺;斜放,竿與門(mén)對(duì)角線恰好相等.問(wèn)門(mén)高、寬、對(duì)角線長(zhǎng)分別是多少?若設(shè)門(mén)對(duì)角線長(zhǎng)為尺,則可列方程為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)的圖象和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整:

1)自變量的取值范圍是__________;

2)下表是的幾組對(duì)應(yīng)數(shù)值:

0

2

3

4

0

2

①寫(xiě)出的值為 ;

②在平面直角坐標(biāo)系中,描出了以表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象:

3)當(dāng)時(shí),直接寫(xiě)出x的取值范圍為:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過(guò)A(-1,0)、B(4,5)三點(diǎn).

(1)求此二次函數(shù)的解析式;

(2)當(dāng)x為何值時(shí),yx的增大而減。

(3)當(dāng)x為何值時(shí),y0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)一批單價(jià)為4/件的日用品。若按每件5元的價(jià)格出售,每月能賣(mài)出3萬(wàn)件;若按每件6元的價(jià)格銷(xiāo)售,每月能賣(mài)出2萬(wàn)件;假定每月的銷(xiāo)售件數(shù)y(萬(wàn)件)與價(jià)格x(元/件)之間滿(mǎn)足一次函數(shù)關(guān)系.

1試求yx的函數(shù)關(guān)系式;

2當(dāng)銷(xiāo)售價(jià)格定為多少時(shí),才能使每月的利潤(rùn)最大?每月的最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案