【題目】如圖,菱形ABCD的對角線相交于點0AC2,BD.將菱形按如圖方式折疊,使點B與點O重合,折痕為EF,則五邊形AEFCD的面積是(

A.B.C.D.

【答案】D

【解析】

根據(jù)菱形的性質(zhì)得到∠ABO=∠CBOAC⊥BD,可證得∠ABC=60°,由折疊的性質(zhì)得到EF⊥BO,推出△BEF是等邊三角形,推出EF△ABC的中位線,求得EF= AC=1,求出△BEF和菱形ABCD的面積,即可得出答案.

解:∵四邊形ABCD是菱形,AC=2,

∴∠ABO=CBOACBD,AO=1,BO= ,
AB=2,

∴∠CBO=ABO=30°,
∴∠ABC=60°
由折疊的性質(zhì)得,EFBO

∴∠BEF=BFE=60°,EFAC,
BE=BF
∴△BEF是等邊三角形, EF是△ABC的中位線,

∴EF= AC=1,
∴△BEF的面積= EF×BO= ×1××=

菱形ABCD的面積= AC×BD= ×2×2

∴五邊形AEFCD的面積=菱形ABCD的面積-BEF的面積=

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某工廠甲、乙兩個部門各有員工400人,為了解這兩個部門員工的生產(chǎn)技能情況,進行了抽樣調(diào)查,過程如下,請補充完整:收集數(shù)據(jù):從甲、乙兩個部門各隨機抽取20名員工,進行了生產(chǎn)技能測試,測試成績(百分)如下:

78

86

74

81

75

76

87

70

75

90

75

79

81

70

74

80

86

69

83

77

93

73

88

81

72

81

94

83

77

83

80

81

70

81

73

78

82

80

70

40

1)整理、描述數(shù)據(jù):按如分數(shù)段整理、描述這兩組樣本數(shù)據(jù)(請補全表格):

0

0

1

11

7

1

__________

0

0

__________

__________

__________

(說明:成績80分及以上為生產(chǎn)技能優(yōu)秀,70-79分為生產(chǎn)技能良好,60-69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)

分析數(shù)據(jù):兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示(請補全表格):

部門

平均數(shù)

中位數(shù)

眾數(shù)

78.3

__________

75

78

80.5

__________

得出結(jié)論:

2)估計乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為__________

3)你認為__________部門員工的生產(chǎn)技能水平較高,說明理由(至少從兩個不同的角度說明推斷的合理性).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形中,為對角線上一點,且,,延長

1)求證:;

2)已知如圖(2),上一點,連接,并將逆時針旋轉(zhuǎn),連接,的中點,連接,試求出

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是ABAC的中點,過點EEF∥AB,交BC于點F

1)求證:四邊形DBFE是平行四邊形;

2)當△ABC滿足什么條件時,四邊形DBEF是菱形?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形中有大小不同的平行四邊形,第一幅圖中有1個平行四邊形,第二幅圖中有3個平行四邊形,第三幅圖中有5個平行四邊形,則第6幅和第7幅圖中合計有( )個平行四邊形

A.22B.24C.26D.28

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD的對角線BD上一點(P不與點B、D重合)PEBC于點E,PFCD于點F,連接EF給出下列五個結(jié)論:APEF;APEF僅有當DAP45°67.5°時,APD是等腰三角形;④∠PFEBAPPDEC.其中有正確有(  )個.

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸l如圖所示,則下列結(jié)論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結(jié)論是(
A.①③
B.②③
C.②④
D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c過點(﹣1,0),且對稱軸為直線x=1,有下列結(jié)論: ①abc<0;②10a+3b+c>0;③拋物線經(jīng)過點(4,y1)與點(﹣3,y2),則y1>y2;④無論a,b,c取何值,拋物線都經(jīng)過同一個點(﹣ ,0);⑤am2+bm+a≥0,其中所有正確的結(jié)論是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式(組),并要求把解集在數(shù)軸上表示出來.

(1)

(2)

查看答案和解析>>

同步練習冊答案