(2002•呼和浩特)如圖,AB是⊙O的直徑,弦AC、BD相交于P,則等于( )

A.sin∠BPC
B.cos∠BPC
C.tan∠BPC
D.cot∠BPC
【答案】分析:連接BC得到直角△BPC,再根據(jù)圓周角定理判斷出△PCD∽△PBA,利用相似三角形對應(yīng)邊成比例即可求解.
解答:解:連接BC.
∵AB是⊙O的直徑,
∴∠BCP=90°.
根據(jù)同弧所對的圓周角相等得:
∠A=∠D,∠DCA=∠PBA
∴△PCD∽△PBA.
=cos∠BPC.
故選B.
點評:此題主要利用相似三角形的性質(zhì),把要求的線段的比轉(zhuǎn)化到一個直角三角形中的兩條直角邊的比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(2002•呼和浩特)已知一次函數(shù)y=x+m和y=-x+n的圖象都經(jīng)過點A(-2,0),且與y軸分別交于B,C兩點,那么△ABC的面積是( )
A.2
B.3
C.4
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•呼和浩特)如圖,在直角坐標(biāo)系中,點O’的坐標(biāo)為(2,0),OO’與x軸交于原點O和點A,B、C、E三點的坐標(biāo)分別為(-1,0),(0,3)和(0,p),且0<p≤3.
(1)求經(jīng)過點B、C的直線的解析式;
(2)當(dāng)點E在線段OC上移動時,直線BE與⊙O'有哪幾種位置關(guān)系?當(dāng)P分別在什么范圍內(nèi)取值時,直線BE與⊙O'是這幾種位置關(guān)系?
(3)設(shè)過點A、B、E的拋物線的頂點是D,求四邊形ABED的面積的最大或最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:填空題

(2002•呼和浩特)已知M、N兩點關(guān)于y軸對稱,且點M在雙曲線y=上,點N在直線y=x+3上,設(shè)點M坐標(biāo)為(a,b),則拋物線y=-abx2+(a+b)x的頂點坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(2002•呼和浩特)已知一次函數(shù)y=x+m和y=-x+n的圖象都經(jīng)過點A(-2,0),且與y軸分別交于B,C兩點,那么△ABC的面積是( )
A.2
B.3
C.4
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年內(nèi)蒙古呼和浩特市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•呼和浩特)如圖,在直角坐標(biāo)系中,點O’的坐標(biāo)為(2,0),OO’與x軸交于原點O和點A,B、C、E三點的坐標(biāo)分別為(-1,0),(0,3)和(0,p),且0<p≤3.
(1)求經(jīng)過點B、C的直線的解析式;
(2)當(dāng)點E在線段OC上移動時,直線BE與⊙O'有哪幾種位置關(guān)系?當(dāng)P分別在什么范圍內(nèi)取值時,直線BE與⊙O'是這幾種位置關(guān)系?
(3)設(shè)過點A、B、E的拋物線的頂點是D,求四邊形ABED的面積的最大或最小值.

查看答案和解析>>

同步練習(xí)冊答案