【題目】如圖,點D⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.(1)判斷直線CD⊙O的位置關系,并說明理由.

2)過點B⊙O的切線BE交直線CD于點E,若AC=2⊙O的半徑是3,求∠BEC的正切值.

【答案】1)直線CDO的位置關系是相切.理由見解析;(2 .

【解析】【試題分析】

(1)證明切線的方法,知道直線與圓的交點,連接半徑證垂直半徑,即可.

2BC已知,關鍵是求BE 的長度,在Rt ,OA=5,OD=3,根據(jù)勾股定理得CD=4,在Rt ,BE=DE=x,列出勾股定理方程4+x2=x2+5+32解得:x=6,所以tanBEC=.

【試題解析】

1)直線CD⊙O的位置關系是相切.

理由:

連接OD,如圖所示:

∵AB⊙O的直徑,

∴∠ADB=90°,

∴∠DAB+∠DBA=90°,

∵∠CDA=∠CBD,

∴∠DAB+∠CDA=90°,

∵OD=OA,

∴∠DAB=∠ADO

∴∠CDA+∠ADO=90°,

即:OD⊥CE,

直線CD ⊙O的切線.

即:直線CD ⊙O的位置關系是相切.

2∵AC=2,⊙O的半徑是3,

∴OC=2=3=5OD=3,

Rt△CDO中,由勾股定理得:CD=4

∵CE⊙OD,EB⊙OB

∴DE=EB,∠CBE=90°,

DE=EB=x,

Rt△CBE中,有勾股定理得:CE2=BE2+BC2,

4+x2=x2+5+32

解得:x=6,

BE=6,

∴tan∠BEC=,

即:tan∠BEC=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形紙片ABCD(如圖①)按如下步驟操作:(1)以過點A的直線為折痕折疊紙片,使點B恰好落在AD邊上,折痕與BC邊交于點E(如圖②);(2)以過點E的直線為折痕折疊紙片,使點A落在BC邊上,折痕EFAD邊于點F(如圖③);(3)將紙片展平,那么∠AFE的度數(shù)為_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某家電銷售商城電冰箱的銷售價為每臺2100元,空調(diào)的銷售價為每臺1750元,每臺電冰箱的進價比每臺空調(diào)的進價多400元,商城用80000元購進電冰箱的數(shù)量與用64000元購進空調(diào)的數(shù)量相等.

1)求每臺電冰箱與空調(diào)的進價分別是多少;

2)現(xiàn)在商城準備一次購進這兩種家電共100臺,設購進電冰箱x臺,這100臺家電的銷售總利潤為y元,要求購進空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于13000元,請分析合理的方案共有多少種,并確定獲利最大的方案以及最大利潤;

3)實際進貨時,廠家對電冰箱出廠價下調(diào)k0k100)元,若商店保持這兩種家電的售價不變,請你根據(jù)以上信息及(2)問中條件,設計出使這100臺家電銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】低碳環(huán)保,你我同行”.近幾年,各大城市的公共自行車給市民出行帶來了極大的方便.圖①是公共自行車的實物圖,圖②是公共自行車的車架示意圖,點A.D、C、E在同一條直線上,CD=30cm,DF=20cm,AF=25cm,F(xiàn)D⊥AE于點D,座桿CE=15cm,且∠EAB=75°.

(1)求AD的長;

(2)求點EAB的距離.(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點ABC分別是⊙O上的點,∠B=60°,AC=3,CD⊙O的直徑,PCD延長線上的一點,且AP=AC

1)求證:AP⊙O的切線;

2)求PD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點Aa﹣2b,2﹣4ab)在拋物線y=x2+4x+10上,則點A關于拋物線對稱軸的對稱點坐標為(  )

A. ﹣3,7 B. ﹣17 C. ﹣4,10 D. 0,10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A(-1,2)關于軸的對稱點坐標是____________;點A關于原點的對稱點的坐標是____________。點A關于x軸對稱的點的坐標為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠ACB=BDA=90°,要使△ACB≌△BDA,還需要添加什么條件?請選擇一個加以證明

添加:

選擇:

證明:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,CD的右側,BE平分ABC,DE平分ADC,BE、DE所在直線交于點E,ADC=70°.

(1)EDC的度數(shù);

(2)ABC=n°,BED的度數(shù)(用含n的代數(shù)式表示);

(3)將線段BC沿DC方向平移,使得點B在點A的右側,其他條件不變,畫出圖形并判斷BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示);若不改變,請說明理由.

查看答案和解析>>

同步練習冊答案