【題目】如圖,在直角坐標(biāo)系中,直線分別交軸、軸于點、,直線過點且分別交軸負(fù)半軸、直線于點,

1)求直線的解析式及點的坐標(biāo);

2)若點為直線上一點,過軸,交直線,且點的橫坐標(biāo)為,若,求的值.

【答案】1)直線l2的解析式為:y2x1,E1,1);(2nn

【解析】

1)首先易得AB的坐標(biāo),進(jìn)而求得D的坐標(biāo),然后根據(jù)待定系數(shù)法求得直線l2的解析式,聯(lián)立解析式,解方程組即可求得E的坐標(biāo);

2)根據(jù)題意列出|n22n1|1,解方程即可求得.

解:(1)由直線l1yx2易得A20),B0,2),

OB2

ODOB1,即D0,1),

∵直線l2ykxb過點C2),D0,1),

,解得:,

∴直線l2的解析式為:y2x1,

解方程組 得:

E1,1);

2)∵點P為直線l1上一點,點P的橫坐標(biāo)為n,

Pnn2),

∵過PPQy軸,交直線l2Q,

Qn2n1),

BD3,PQBD,

PQ1,

|n22n1|1,

解得:nn

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖像與軸、軸分別交于點、,以為邊在第二象限內(nèi)作等邊

1)求點的坐標(biāo);

2)在第二象限內(nèi)有一點,使,求點的坐標(biāo);

3)將沿著直線翻折,點落在點處;再將繞點順時針方向旋轉(zhuǎn)15°,點落在點處,過點軸于.求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解下列方程時,配方有錯誤的是( )

A.x2﹣2x﹣99=0化為(x﹣1)2=100

B.x2+8x+9=0化為(x+4)2=25

C.2t2﹣7t﹣4=0化為(t﹣2=

D.3x2﹣4x﹣2=0化為(x﹣2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個粒子在軸上及第一象限內(nèi)運(yùn)動,第1次從運(yùn)動到,第2次從運(yùn)動到,第3次從運(yùn)動到,它接著按圖中箭頭所示的方向運(yùn)動.則第2019次時運(yùn)動到達(dá)的點為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從、兩地同時相向勻速行駛,當(dāng)乙車到達(dá)地后,繼續(xù)保持原速向遠(yuǎn)離的方向行駛,而甲車到達(dá)地后,休息半小時后立即掉頭,并以原速的倍與乙車同向行駛,經(jīng)過一段時間后,兩車先后到達(dá)距地并停下來,設(shè)兩車行駛的時間為,兩車之間的距離為的函數(shù)關(guān)系如圖,則當(dāng)甲車從地掉頭追到乙車時,乙車距離__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一邊長為4正方形放在平面直角坐標(biāo)系中,其中為原點,點、分別在軸、軸上,為射線上任意一點

1)如圖1,若點坐標(biāo)為,連接于點,則的面積為__________;

2)如圖2,將沿翻折得,若點在直線圖象上,求出點坐標(biāo);

3)如圖3,將沿翻折得,和射線交于點,連接,若,平面內(nèi)是否存在點,使得是以為直角邊的等腰直角三角形,若存在,請求出所有點坐標(biāo):若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,ABCD,O為內(nèi)切圓,E為切點.

(1)求證:AO2=AEAD;

(2)AO=4cm,AD=5cm,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點F、C是⊙O上兩點,且點C為弧BF的中點,連接AC、AF,過點C作CD⊥AF交AF延長線于點D.

(1)求證:CD是⊙O的切線;

(2)判斷線段AB、AF與AD之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋里裝有紅、黑、綠三種顏色的乒乓球(除顏色外其余都相同),其中紅球有個,黑球有個,綠球有個,第一次任意摸出一個球(不放回),第二次再摸出一個球,則兩次摸到的都是紅球的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案