【題目】某水產(chǎn)品養(yǎng)殖企業(yè)為指導該企業(yè)某種產(chǎn)品的養(yǎng)殖和銷售,對歷年市場行情和水產(chǎn)品的養(yǎng)殖情況進行了調查.調查發(fā)現(xiàn)這種水產(chǎn)品的每千克售價(元)與銷售月份(月)滿足關系式+36,而其每千克成本(元)與銷售月份(月)滿足的函數(shù)關系如圖所示:

1)試確定的值;

2)求出這種水產(chǎn)品每千克的利潤(元)與銷售月份(月)之間的函數(shù)關系式;

3)幾月份出售這種水產(chǎn)品每千克利潤最大?最大利潤是多少?

【答案】1;(2;(36月份出售這種水產(chǎn)品每千克利潤最大,最大利潤是每千克11元.

【解析】

1)把圖中的已知坐標代入解析式,解方程組求出bc即可;

2)由題意得,化簡函數(shù)關系式即可;

3)已知yx的函數(shù)關系式,用配方法化為頂點式,根據(jù)拋物線的性質即可求出最大值.

解:(1)根據(jù)圖象,將分別代入解析式得:

解得:,;

2)由題意得:

3)將化為頂點式得:,

,

∴拋物線開口向下,

∴當時,二次函數(shù)取得最大值,此時y=11,

所以6月份出售這種水產(chǎn)品每千克利潤最大,最大利潤是每千克11元。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】對于給定的,我們給出如下定義:若點M是邊上的一個定點,且以M為圓心的半圓上的所有點都在的內部或邊上,則稱這樣的半圓為邊上的點M關于的內半圓,并將半徑最大的內半圓稱為點M關于的最大內半圓.若點M是邊上的一個動點(M不與B,C重合),則在所有的點M關于的最大內半圓中,將半徑最大的內半圓稱為關于的內半圓.

1)在中,,

①如圖1,點D在邊上,且,直接寫出點D關于的最大內半圓的半徑長;

②如圖2,畫出關于的內半圓,并直接寫出它的半徑長;

2)在平面直角坐標系中,點E的坐標為,點P在直線上運動(P不與O重合),將關于的內半圓半徑記為R,當時,求點P的橫坐標t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知平行四邊形,過點的垂線,垂足為點,且滿足,過點的垂線,垂足為點,交于點,連接

1)如圖1,若,,求的長度;

2)如圖2上一點,連接,在內取一點,連接,過點的垂線,垂足為點,若.求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABCD,∠B60°,AD2,BC8,點P從點B出發(fā)沿折線BAADDC勻速運動,同時,點Q從點B出發(fā)沿折線BCCD勻速運動,點P與點Q的速度相同,當二者相遇時,運動停止,設點P運動的路程為x,BPQ的面積為y,則y關于x的函數(shù)圖象大致是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,CD3cm,BC4cm,連接BD,并過點CCNBD,垂足為N,直線l垂直BC,分別交BD、BC于點PQ.直線lAB出發(fā),以每秒1cm的速度沿BC方向勻速運動到CD為止;點M沿線段DA以每秒1cm的速度由點D向點A勻速運動,到點A為止,直線1與點M同時出發(fā),設運動時間為t秒(t0).

1)線段CN   ;

2)連接PMQN,當四邊形MPQN為平行四邊形時,求t的值;

3)在整個運動過程中,當t為何值時PMN的面積取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在黃金矩形ABCD中,四邊形ABFGGHED均為正方形,,現(xiàn)將矩形ABCD沿AE向上翻折,得四邊形AEC'B',連接BB',若AB2,則線段BB'的長度為(  )

A.B.C.2D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蛋黃酥是現(xiàn)下糕點界的網(wǎng)紅,每一顆蛋黃酥金黃誘人的酥皮下都包著一顆細膩綿沙的咸蛋黃,其口口酥心,層層松軟的特點讓人難忘.某商家推出兩款八粒裝的蛋黃酥,其中麻薯豆沙蛋黃酥50元每盒,蓮蓉千層蛋黃酥48元每盒,兩款蛋黃酥非常暢銷,平均每周銷售額為344000元.

1)受生產(chǎn)能力限制,該商家平時每周生產(chǎn)7000盒八粒裝蛋黃酥,為了保證周銷售額不變,則每周平均需生產(chǎn)麻薯豆沙蛋黃酥多少盒?

2)在(1)的條件下,為了迎接雙十一大促,該商家提前擴大生產(chǎn)能力,并在雙十一當天,開展蛋黃酥促銷活動,麻薯豆沙蛋黃酥售價降低了a元,其銷量在當天比平時周銷量增加了2000盒,最后當天兩款蛋黃酥的總銷售額比平時周銷售額還多96000元,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】第二十四屆冬季奧林匹克運動會將于202224日至220日在北京舉行,北京將成為歷史上第一座既舉辦過夏奧會又舉辦過冬奧會的城市.某區(qū)舉辦了一次冬奧知識網(wǎng)上答題競賽,甲、乙兩校各有名學生參加活動,為了解這兩所學校的成績情況,進行了抽樣調查,過程如下,請補充完整.

[收集數(shù)據(jù)]

從甲、乙兩校各隨機抽取名學生,在這次競賽中他們的成績如下:

甲:

乙:

[整理、描述數(shù)據(jù)]按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):

學校

人數(shù)

成績

(說明:優(yōu)秀成績?yōu)?/span>,良好成績?yōu)?/span>合格成績?yōu)?/span>.)

[分析數(shù)據(jù)]兩組樣本數(shù)據(jù)的平均分、中位數(shù)、眾數(shù)如下表所示:

學校

平均分

中位數(shù)

眾數(shù)

其中 .

[得出結論]

(1)小明同學說:“這次競賽我得了分,在我們學校排名屬中游略偏上!”由表中數(shù)據(jù)可知小明是 _校的學生;(填“甲”或“乙”)

(2)張老師從乙校隨機抽取--名學生的競賽成績,試估計這名學生的競賽成績?yōu)閮?yōu)秀的概率為_ ;

(3)根據(jù)以上數(shù)據(jù)推斷一所你認為競賽成績較好的學校,并說明理由: ;

(至少從兩個不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,點為直線上一動點(點不與點重合),以為腰作等腰直角,使,連接

1)觀察猜想

如圖1,當點在線段上時,

的位置關系為__________;

之間的數(shù)量關系為___________(提示:可證

2)數(shù)學思考

如圖2,當點在線段的延長線上時,(1)中的①、②結論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明;

3)拓展延伸

如圖3,當點在線段的延長線時,將沿線段翻折,使點與點重合,連接,若,請直接寫出線段的長.(提示:做,做

查看答案和解析>>

同步練習冊答案