【題目】如圖,PA、PB切⊙O于A、B兩點,CD切⊙O于點E,分別交PA、PB于點C、D.若PA、PB的長是關(guān)于x的一元二次方程x2﹣mx+m﹣1=0的兩個根,求△PCD的周長.
【答案】2
【解析】
由PA、PB切⊙O于A、B兩點,CD切⊙O于點E,根據(jù)切線長定理,可得PA=PB,又由PA、PB的長是關(guān)于x的一元二次方程x2﹣mx+m﹣1=0的兩個根,根據(jù)根與系數(shù)的關(guān)系,可求得PA與PB的長,又由CD切⊙0于點E,即可得△PCD的周長等于PA+PB.
解:∵PA、PB的長是關(guān)于x的一元二次方程x2﹣mx+m﹣1=0的兩個根,
∴PA+PB=m,PAPB=m﹣1,
∵PA、PB切⊙O于A、B兩點,
∴PA=PB=,
即=m﹣1,
即m2﹣4m+4=0,
解得:m=2,
∴PA=PB=1,
∵PA、PB切⊙O于A、B兩點,CD切⊙O于點E,
∴AD=ED,BC=EC,
∴△PCD的周長為:PD+CD+PC=PD+DE+EC+PC=PD+AD+BC+PC=PA+PB=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=x+m與x軸、y軸交于點A、B,與雙曲線分別交于點C、D,且點C的坐標為(-1,2)
(1)分別求出直線AB及雙曲線的解析式;
(2)求出點D的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,F,G是直徑AB上的兩點,C,D,E是半圓上的三點,如果弧AC的度數(shù)為60°,弧BE的度數(shù)為20°,∠CFA=∠DFB,∠DGA=∠EGB.求∠FDG的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1過點A(0,4)與點D(4,0),直線l2:y=x+1與x軸交于點C,兩直線l1,l2相交于點B.
(1)求直線l1的函數(shù)表達式;
(2)求點B的坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經(jīng)過點B,另一邊與射線DC相交于點Q,設(shè)A、P兩點間的距離為x.
探究:
(1)當(dāng)點Q在邊CD上時,線段PQ與線段PB之間有怎樣的大小關(guān)系?試證明你觀察到的結(jié)論;
(2)當(dāng)點Q在邊CD上時,設(shè)四邊形PBCQ的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;(3)當(dāng)點P在線段AC上滑動時,△PCQ是否能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點Q的位置,并求出相應(yīng)x的值;如果不可能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC,AB于點E,F(xiàn).
(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)為弘揚 “東亞文化”,某單位開展了“東亞文化之都”演講比賽,在安排1位女選手和3位男選手的出場順序時,采用隨機抽簽方式.
(1)請直接寫出第一位出場是女選手的概率;
(2)請你用畫樹狀圖或列表的方法表示第一、二位出場選手的所有等可能結(jié)果,并求出他們都是男選手的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并完成相應(yīng)的任務(wù).
基本性質(zhì):三角形中線等分三角形的面積.
如圖,是的邊上的中線,
則
理由:過點作于點
∵是的邊上的中線.
∴又∵,
∴
∴三角形中線等分三角形的面積.
任務(wù):
(1)如圖,延長的邊到點,使,連接,則和的數(shù)量關(guān)系為_________.
(2)如圖,點是的邊上任意一點,點分別是線段,的中點,且的面積為,請同學(xué)們借助上述結(jié)論求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com