)一種花瓣的花粉顆粒直徑約為0.0000065米,將數(shù)據(jù)0.0000065用科學記數(shù)法表示為
科目:初中數(shù)學 來源: 題型:
如圖,拋物線y=﹣x2+2x+3與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C,頂點為D.
(1)直接寫出A、B、C三點的坐標和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設(shè)點P的橫坐標為m;
①用含m的代數(shù)式表示線段PF的長,并求出當m為何值時,四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.
(3)在拋物線上是否存在點G,使△DGB為直角三角形?若存在,請直接寫出G點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,直線AB∥CD,直線EF與AB,CD相交于點E,F(xiàn),∠BEF的平分線與CD相交于點N.若∠1=63°,則∠2=( )
A. 64° B. 63° C. 60° D. 54°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,拋物線y=ax2+bx+c與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸I為x=﹣1.
(1)求拋物線的解析式并寫出其頂點坐標;
(2)若動點P在第二象限內(nèi)的拋物線上,動點N在對稱軸I上.
①當PA⊥NA,且PA=NA時,求此時點P的坐標;
②當四邊形PABC的面積最大時,求四邊形PABC面積的最大值及此時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
謝爾賓斯基地毯,最早是由波蘭數(shù)學家謝爾賓斯基制作出來的:把一個正三角形分成全等的4個小正三角形,挖去中間的一個小三角形;對剩下的3個小正三角形再分別重復(fù)以上做法…將這種做法繼續(xù)進行下去,就得到小格子越來越多的謝爾賓斯基地毯(如圖).若圖1中的陰影三角形面積為1,則圖5中的所有陰影三角形的面積之和是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com