【題目】如圖,已知AB∥CD,現(xiàn)將一直角三角形PMN放入圖中,其中∠P=90°,PM交AB于點E,PN交CD于點F
(1)當△PMN所放位置如圖①所示時,則∠PFD與∠AEM的數量關系為 ;
(2)當△PMN所放位置如圖②所示時,求證:∠PFD﹣∠AEM=90°;
(3)在(2)的條件下,若MN與CD交于點O,且∠DON=30°,∠PEB=15°,求∠N的度數.
【答案】(1)∠PFD+∠AEM=90°(2)證明見解析(3)45°
【解析】分析:(1)由AB∥CD可得∠PFD與∠AEM的等于∠P;(2)∠1+∠PFD=180°,由對頂角相等,分別將∠1,∠AEM轉化為∠PHE與∠2;(3)由∠PEB=15°得∠PHE和∠1,又AB∥CD,則∠1=∠PFC,而∠PFC=∠N+∠DON.
詳解:(1)過P作平行線,由AB∥CD易得∠PFD與∠AEM的等于∠P,所以∠PFD與∠AEM的數量關系為 ∠PFD+∠AEM=90° ;
(2)證明:如圖②所示:
∵AB∥CD,∴∠PFD+∠1=180°,
∵∠P=90°,∴∠PHE+∠2=90°,
∵∠2=∠AEM,∴∠1=∠PHE=90°﹣∠AEM,
∴∠PFD+90°﹣∠AEM=180°,
∴∠PFD﹣∠AEM=90°;
(3)如圖②所示:
∵∠P=90°,∴∠PHE=90°﹣∠PEB=90°﹣15°=75°,
∵AB∥CD,∴∠PFC=∠PHE=75°,
∵∠PFC=∠N+∠DON,
∴∠N=75°﹣30°=45°.
科目:初中數學 來源: 題型:
【題目】已知a是最大的負整數,b是多項式2m2n-m3n2-m-2的次數,c是單項式-2xy2的系數,且a,b,c分別是點A,B,C在數軸上對應的數.
(1)求a,b,c的值,并在數軸上標出點A,B,C;
(2)若動點P,Q同時從A,B出發(fā)沿數軸負方向運動,點P的速度是每秒個單位長度,點Q的速度是每秒2個單位長度,求運動幾秒后,點Q可以追上點P?
(3)在數軸上找一點M,使點M到A,B,C三點的距離之和等于10,請直接寫出所有點M對應的數.(不必說明理由)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的箱子里,裝有黃、白、黑各一個球,它們除了顏色之外沒有其他區(qū)別.
(1)隨機從箱子里取出1個球,則取出黃球的概率是多少?
(2)隨機從箱子里取出1個球,放回攪勻再取第二個球,請你用畫樹狀圖或列表的方法表示出所有可能出現(xiàn)的結果,并求兩次取出的都是白色球的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,有一組平行線l1∥l2∥l3∥l4,正方形ABCD的四個頂點分別在l1,l2,l3,l4上,EG過點D且垂直l1于點E,分別交l2,l4于點F,G,EF=DG=1,DF=2.
(1)AE=__________,正方形ABCD的邊長=__________;
(2)如圖2,將∠AEG繞點A順時針旋轉得到∠AE′D′,旋轉角為α(0°<α<90°),點D′在直線l3上,以AD′為邊在E′D′左側作菱形AB′C′D′,使B′、C′分別在直線l2,l4上.
①寫出∠B′AD′與α的數量關系并給出證明;
②若α=30°,直接寫出菱形AB′C′D′的邊長為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校舉行全體學生“漢字聽寫”比賽,每位學生聽寫漢字39個.現(xiàn)隨機抽取了部分學生的聽寫結果,繪制成如下的圖表:
組別 | 正確字數x | 人數 |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | M |
E | 32≤x<40 | n |
根據以上信息完成下列問題:
(1)統(tǒng)計表中的m= ,n= ,并補全條形統(tǒng)計圖.
(2)扇形統(tǒng)計圖中“C組”所對應的圓心角的度數是 .
(3)已知該校共有900名學生,如果聽寫正確的字的個數少于16個定為不合格,請你估計該校本次聽寫比賽不合格的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個正方體,六個面上分別寫有六個連續(xù)的整數(如圖所示),且每兩個相對面上的數字和相等,本圖所能看到的三個面所寫的數字分別是:,,,問:與它們相對的三個面的數字各是多少?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2012年4月23日是第17個世界讀書日,《教育導報》記者就四川省農村中小學教師閱讀狀況進行了一次問卷調查,并根據調查結果繪制了教師每年閱讀書籍數量的統(tǒng)計圖(不完整).設x表示閱讀書籍的數量(x為正整數,單位:本).其中A:1≤x≤3; B:4≤x≤6; C:7≤x≤9;D:x≥10.請你根據兩幅圖提供的信息解答下列問題:
(1)本次共調查了多少名教師?
(2)補全條形統(tǒng)計圖;
(3)計算扇形統(tǒng)計圖中扇形D的圓心角的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖①,∠MON=60°,點A,B為射線OM,ON上的動點(點A,B不與點O重合),且AB=4 ,在∠MON的內部,△AOB的外部有一點P,且AP=BP,∠APB=120°.
(1)求AP的長;
(2)求證:點P在∠MON的平分線上.
(3)如圖②,點C,D,E,F(xiàn)分別是四邊形AOBP的邊AO,OB,BP,PA的中點,連接CD,DE,EF,F(xiàn)C,OP.
①當AB⊥OP時,請直接寫出四邊形CDEF的周長的值;
②若四邊形CDEF的周長用t表示,請直接寫出t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com