【題目】(2016廣西柳州市)如圖,ABABC外接圓⊙O的直徑,點(diǎn)P是線段CA延長線上一點(diǎn),點(diǎn)E在圓上且滿足=PAPC,連接CE,AE,OE,OECA于點(diǎn)D

(1)求證:PAE∽△PEC;

(2)求證:PE為⊙O的切線;

(3)若∠B=30°,AP=AC,求證:DO=DP

【答案】1)證明見解析;(2)證明見解析;(3)證明見解析.

【解析】

1)利用兩邊對應(yīng)成比例,夾角相等,兩三角形相似即可;
2)連接BE,轉(zhuǎn)化出∠OEB=PCE,又由相似得出∠PEA=PCE,從而用直徑所對的圓周角是直角,轉(zhuǎn)化出∠OEP=90°即可;
3)構(gòu)造全等三角形,先找出ODPA的關(guān)系,再用等積式找出PEPA的關(guān)系,從而判斷出OM=PE,得出△ODM≌△PDE即可.

(1)∵=PAPC,

,

∵∠APE=∠EPC,

∴△PAE∽△PEC

(2)如圖1,連接BE,

∴∠OBE=∠OEB

∵∠OBE=∠PCE,

∴∠OEB=∠PCE,

∵△PAE∽△PEC,

∴∠PEA=∠PCE

∴∠PEA=∠OEB

AB為直徑,∴∠AEB=90°,

∴∠OEB+∠OEA=90°,

∵∠PEA+∠OEA=90°,

∴∠OEP=90°,

點(diǎn)EO上,

PEO的切線;

(3)如圖2,過點(diǎn)OODACM,

AM=AC,

BCAC

ODBC,

∵∠ABC=30°,

∴∠AOD=30°,

OD=AM=AC,

AP=AC

OD=AP,

PC=AC+AP=2AP+AP=3AP,

=PA×PC=PA×3PA,

PE=PA

OD=PE,

∵∠PED=∠OMD=90°,∠ODM=∠PDE,

∴△ODM≌△PDE

OD=DP

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)報(bào)道,“國際剪刀石頭布協(xié)會”提議將“剪刀石頭布”作為奧運(yùn)會比賽項(xiàng)目.某校學(xué)生會想知道學(xué)生對這個(gè)提議的了解程度,隨機(jī)抽取部分學(xué)生進(jìn)行了一次問卷調(diào)查,并根據(jù)收集到的信息進(jìn)行了統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題.

1)接受問卷調(diào)查的學(xué)生共有   名,扇形統(tǒng)計(jì)圖中“基本了解”部分所對應(yīng)扇形的圓心角為   ;請補(bǔ)全條形統(tǒng)計(jì)圖;

2)若該校共有學(xué)生1200人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中對將“剪刀石頭布”作為奧運(yùn)會比賽項(xiàng)目的提議達(dá)到“了解””和“基本了解”程度的總?cè)藬?shù);

3)“剪刀石頭布”比賽時(shí)雙方每次任意出“剪刀”、“石頭”、“布”這三種手勢中的一種,規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀,若雙方出現(xiàn)相同手勢,則算打平.若小剛和小明兩人只比賽一局,請用樹狀圖或列表法求兩人打平的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形中,BC=3,動(dòng)點(diǎn)出發(fā),以每秒1個(gè)單位的速度,沿射線方向移動(dòng),作關(guān)于直線的對稱,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為

1)若

①如圖2,當(dāng)點(diǎn)B’落在AC上時(shí),顯然PCB’是直角三角形,求此時(shí)t的值

②是否存在異于圖2的時(shí)刻,使得PCB’是直角三角形?若存在,請直接寫出所有符合題意的t的值?若不存在,請說明理由

2)當(dāng)P點(diǎn)不與C點(diǎn)重合時(shí),若直線PB’與直線CD相交于點(diǎn)M,且當(dāng)t3時(shí)存在某一時(shí)刻有結(jié)論∠PAM=45°成立,試探究:對于t3的任意時(shí)刻,結(jié)論∠PAM=45°是否總是成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+2x+3,截取該函數(shù)圖象在0≤x≤4間的部分記為圖象G,設(shè)經(jīng)過點(diǎn)(0,t)且平行于x軸的直線為l,將圖象G在直線l下方的部分沿直線l翻折,圖象G在直線上方的部分不變,得到一個(gè)新函數(shù)的圖象M,若函數(shù)M的最大值與最小值的差不大于5,則t的取值范圍是(  )

A.1≤t≤0B.1≤tC.D.t1t≥0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°到正方形ABCD,圖中陰影部分的面積為( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李明準(zhǔn)備進(jìn)行如下操作實(shí)驗(yàn),把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個(gè)正方形.

(1)要使這兩個(gè)正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?

(2)李明認(rèn)為這兩個(gè)正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說法正確嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,,以為坐標(biāo)原點(diǎn),以所在的直線為軸建立平面直角坐標(biāo)系,如圖.按以下步驟作圖:①分別以點(diǎn)為圓心,以大于的長為半徑作弧,兩弧相交于點(diǎn),②作直線于點(diǎn).則點(diǎn)的坐標(biāo)為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O直徑,BC為⊙O切線,連接A、C兩點(diǎn),交⊙O于點(diǎn)D,BE=CE,連接DE,OE.

(1)判斷DE與⊙O的位置關(guān)系,并說明理由;

(2)求證:BC2=CD2OE;

(3)若cos∠BAD=,BE=6,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片,,點(diǎn)邊上,將沿折疊,點(diǎn)落在點(diǎn)處,、分別交于點(diǎn)、,且,則的值為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案