【題目】如圖,過(guò)點(diǎn)A2,0)的兩條直線l1、l2分別交y軸于點(diǎn)B、C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB

1)求點(diǎn)B的坐標(biāo);

2)若OCOB13,求直線l2的解析式.

【答案】1B0,3);(2yx1

【解析】

1)先根據(jù)勾股定理求得BO的長(zhǎng),即可求得點(diǎn)B的坐標(biāo);(2)根據(jù)OCOB13可得C的坐標(biāo),再利用待定系數(shù)法求得直線l2的解析式即可.

1)∵點(diǎn)A的坐標(biāo)為(2,0),

AO2

在直角三角形OAB中,AO2+OB2AB2,

22+OB2

OB3,

B03);

2)∵OCOB13,

OC1

∵點(diǎn)C在原點(diǎn)下方,

C0,﹣1),

設(shè)直線l2的解析式為:ykx+b,

C0,﹣1)和A2,0)代入得: ,

解得:

∴直線l2的解析式為:y x1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小組在“用頻率估計(jì)概率”的實(shí)驗(yàn)中,統(tǒng)計(jì)了某種頻率結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計(jì)圖,那么符合這一結(jié)果的實(shí)驗(yàn)最有可能的是(  )

A. 擲一枚質(zhì)地均勻的硬幣,落地時(shí)結(jié)果是“正面向上”

B. 擲一個(gè)質(zhì)地均勻的正六面體骰子,落地時(shí)朝上的面點(diǎn)數(shù)是6

C. 在“石頭剪刀、和”的游戲中,小明隨機(jī)出的是“剪刀”

D. 袋子中有1個(gè)紅球和2個(gè)黃球,只有顏色上的區(qū)別,從中隨機(jī)取出一個(gè)球是黃球

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC的平分線交CD于點(diǎn)E.

(1)若∠A=70°,求∠ABE的度數(shù);

(2)若AB∥CD,且∠1=∠2,判斷DF和BE是否平行,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點(diǎn)P是BC上的一點(diǎn).

(1)請(qǐng)寫(xiě)出圖中∠1的一對(duì)同位角,一對(duì)內(nèi)錯(cuò)角,一對(duì)同旁?xún)?nèi)角;

(2)求∠EFC與∠E的度數(shù);

(3)若∠BFP=46°,請(qǐng)判斷CE與PF是否平行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,A(a0),C(b2),且滿(mǎn)足(a2)20,過(guò)CCBx軸于B.

(1)求三角形ABC的面積;

(2)如圖②,若過(guò)BBDACy軸于D,且AE,DE分別平分∠CAB,ODB,求∠AED的度數(shù);

(3)y軸上是否存在點(diǎn)P,使得三角形ACP和三角形ABC的面積相等?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圖中的小方格都是邊長(zhǎng)為1的正方形, △ABC△A′ B′ C′是關(guān)于點(diǎn)0為位似中心的位似圖形,它們的頂點(diǎn)都在小正方形的頂點(diǎn)上.

(1)畫(huà)出位似中心點(diǎn)0;

(2)求出△ABC△A′B′C′的位似比;

(3)以點(diǎn)0為位似中心,再畫(huà)一個(gè)△A1B1C1,使它與△ABC的位似比等于1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.

(1)請(qǐng)直接寫(xiě)出線段AF,AE的數(shù)量關(guān)系;

(2)①將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),如圖②,連接AE,請(qǐng)判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;

②若AB=2,CE=2,在圖②的基礎(chǔ)上將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn)一周的過(guò)程中,當(dāng)平行四邊形ABFD為菱形時(shí),直接寫(xiě)出線段AE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,△DAC、△EBC均是等邊三角形,點(diǎn)A、C、B在同一條直線上,且AEBD分別與CD、CE交于點(diǎn)M、N.

求證:(1AE=DB;

2△CMN為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABCD中,點(diǎn)EBC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F,連接BF

(1)求證:△ABE≌△FCE

(2)AFAD,求證:四邊形ABFC是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案