【題目】(材料閱讀):地球是一個球體,任意兩條相對的子午線都組成一個經(jīng)線圈(如圖中的).人們在北半球可觀測到北極星,我國古人在觀測北極星的過程中發(fā)明了如圖所示的工具尺(古人稱它為“復矩”),尺的兩邊互相垂直,角頂系有一段棉線,棉線末端系一個銅錘,這樣棉線就與地平線垂直.站在不同的觀測點,當工具尺的長邊指向北極星時,短邊與棉線的夾角的大小是變化的.

(實際應用):觀測點在圖1所示的上,現(xiàn)在利用這個工具尺在點處測得,在點所在子午線往北的另一個觀測點,用同樣的工具尺測得的直徑,

1)求的度數(shù);

2)已知km,求這兩個觀測點之間的距離即的長.(

【答案】1;(2km).

【解析】

1)設點B的切線CBON延長線于點E,HDBCD,CHBHBC于點C,則∠DHC=67°,證出∠HBD=DHC=67°,由平行線的性質(zhì)得出∠BEO=HBD=67°,由直角三角形的性質(zhì)得出∠BOE=23°,得出∠POB=90°-23°=67°;

2)同(1)可證∠POA=31°,求出∠AOB=POB-POA=36°,由弧長公式即可得出結果.

1)設點的切線延長線于點,于點,如圖所示:

,

,

,

,

,

,

2)同(1)可證,

,

km).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xoy中(如圖),已知一次函數(shù)的圖像平行于直線,且經(jīng)過點A2,3),與x軸交于點B。

1)求這個一次函數(shù)的解析式;

2)設點Cy軸上,當ACBC時,求點C的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,AC=BC,∠ACB=90°,點D、E分別在ACBC上,BDAE交于點O,且CD=CE,若點FBD的中點,連接CF,交AE于點G

1)求證:CFAE;

2)如圖2,過點FFMBC,交AE的延長線于點M,垂足為M,連接CF,若CG=GM

①求證:CF=CM;

②求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結OB,點DOB的中點,點E是線段AB上的動點,連結DE,作DFDE,交OA于點F,連結EF.已知點EA點出發(fā),以每秒1個單位長度的速度在線段AB上移動,設移動時間為t秒.

(1)如圖1,當t=3時,求DF的長.

(2)如圖2,當點E在線段AB上移動的過程中,DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.

(3)連結AD,當ADDEF分成的兩部分的面積之比為1:2時,求相應的t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點為二次函數(shù)圖象的頂點,直線分別交軸正半軸,軸于點.

1)如圖1,若二次函數(shù)圖象也經(jīng)過點,試求出該二次函數(shù)解析式,并求出的值.

2)如圖2,點坐標為,點內(nèi),若點,都在二次函數(shù)圖象上,試比較的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的半徑為1,AB,AC是⊙O的兩條弦,且ABAC,延長BOAC于點D,連接OA,OC,若AD2ABDC,則OD__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是正方形的邊的中點,點關于對稱,的延長線與交于點,與的延長線交于點,點的延長線上,作正方形,連接,記正方形,的面積分別為,則下列結論錯誤的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年泉州市初中體育中考中,隨意抽取某校5位同學一分鐘跳繩的次數(shù)分別為158,160,154,158,170,則由這組數(shù)據(jù)得到的結論錯誤的是(  )

A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個工程隊共同承擔一項筑路任務,甲隊單獨施工完成此項任務比乙隊單獨施工完成此項任務多用10天,且甲隊單獨施工45天和乙隊單獨施工30天的工作量相同.

(1)甲、乙兩隊單獨完成此項任務各需多少天?

(2)若甲、乙兩隊共同工作了3天后,乙隊因設備檢修停止施工,由甲隊繼續(xù)施工,為了不影響工程進度,甲隊的工作效率提高到原來的2倍,要使甲隊總的工作量不少于乙隊的工作量的2倍,那么甲隊至少再單獨施工多少天?

查看答案和解析>>

同步練習冊答案