【題目】如圖,已知□ABCD的對角線AC , BD相交于點O , 直線EF經(jīng)過點O , 且分別交AB , CD于點E , F.求證:四邊形BFDE是平行四邊形..
【答案】證明:∵□ABCD的對角線AC , BD相交于點O ,
∴OA=OC , OB=OD , ∠DCO=∠BAO
又∵∠AOE=∠COD,
∴△AOE≌△COF ,
得OE=OF ,
∴四邊形BFDE是平行四邊形.
【解析】由平行四邊形的性質(zhì)得到OA=OC , OB=OD , ∠DCO=∠BAO , 再由ASA證得△AOE≌△COF , 可推出OE=OF , 從而得到對角線互相平分的四邊形是平行四邊形.
【考點精析】根據(jù)題目的已知條件,利用平行四邊形的判定的相關(guān)知識可以得到問題的答案,需要掌握兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形.
科目:初中數(shù)學 來源: 題型:
【題目】小明的爸爸在釘制平行四邊形框架時,采用了一種方法:如圖所示,將兩根木條AC , BD的中點重疊,并用釘子固定,則四邊形ABCD就是平行四邊形,這種方法的依據(jù)是( )
A.對角線互相平分的四邊形是平行四邊形,
B.兩組對角分別相等的四邊形是平行四邊形,
C.兩組對邊分別平行的四邊形是平行四邊形,
D.兩組對邊分別相等的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC和BD相交于點O , E , F分別為OB , OD的中點,過點O任作一直線分別交AB , CD于點G , H.
試說明:GF∥EH.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com