【題目】如圖,在長(zhǎng)方形ABCD中,AD=BC,AB=CD,AD>AB,將長(zhǎng)方形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為MN,連接CN.若△CDN的面積與△CMN的面積比為1:3,
(1)求證:DN=BM;(2)求ND:NA的值;(3)求MN2:BM2的值.
【答案】(1)見解析;(2)1:3;(3)12
【解析】
(1)利用證明全等三角形得出DN=BM;(2)利用面積之比推出三角形對(duì)應(yīng)邊之比;(3)過點(diǎn)N作NG⊥BC于G,推出CDNG為矩形,根據(jù)矩形的性質(zhì)推出邊之比,設(shè)DN=x,用x表示MN及BM,即可得出答案.
(1)∵∠EAN=90°,∠BAN=90°且∠NAE為公共角.
∴∠EAN=∠BAM.又∵AB=CD,∠B=∠D=90°
∴△ABM≌△CDN(ASA)
∴DN=BM
(2)∵ △CDN的面積與△CMN的面積比為1:3,他們等高.
∴DN:MC=1:3
又∵AN∥CM,AM∥CN
∴四邊形AMCN為平行四邊形,且由于折疊時(shí)CM=AM
∴四邊形AMCN為菱形.
∴DN:MC=DN:NA=1:3
(3)過點(diǎn)N作NG⊥BC于G,如圖.
∵四邊形ABCD是矩形,
∴四邊形CDNG是矩形,AD∥BC,∴CD=NG,CG=DN,
∠ANM=∠CMN,由折疊的性質(zhì)可得:AM=CM,∠AMN=∠CMN,
∴∠ANM=∠AMN
∴AM=AN,
∴四邊形AMCN是平行四邊形,
∵AM=CM,
∴四邊形AMCN是菱形,
∵△CDN的面積與△CMN的面積比為1:3,
∴DN:CM=1:3,
設(shè)DN=x,
則AM=AN=CM=CN=3x,AD=BC=4x,CG=x,
∴BM=x,GM=2x,
在Rt△CGN中,NG===2 .
在Rt△MNG中,MN===2x
∴==12..
故答案為:12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(4,﹣ ),且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)
(1)求拋物線的解析式及A,B兩點(diǎn)的坐標(biāo);
(2)若(1)中拋物線的對(duì)稱軸上有點(diǎn)P,使△ABP的面積等于△ABC的面積的2倍,求出點(diǎn)P的坐標(biāo);
(3)在(1)中拋物線的對(duì)稱軸l上是否存在一點(diǎn)Q,使AQ+CQ的值最小?若存在,求AQ+CQ的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB∥CD,EF分別交AB、CD于G、F兩點(diǎn),射線FM平分∠EFD,將射線FM平移,使得端點(diǎn)F與點(diǎn)G重合且得到射線GN.若∠EFC=110°,則∠AGN的度數(shù)是( 。
A. 120° B. 125° C. 135° D. 145°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,PD切⊙O于點(diǎn)D,過點(diǎn)B作BE垂直于PD,交PD的延長(zhǎng)線于點(diǎn)C,連接AD并延長(zhǎng),交BE于點(diǎn)E.
(1)求證:AB=BE;
(2)若PA=2,cosB= ,求⊙O半徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩條拋物線的頂點(diǎn)相同,則稱它們?yōu)椤坝押脪佄锞”,已知拋物線C1:y1=﹣x2+ax+b與拋物線C2:y2=2x2+4x+6為“友好拋物線”,拋物線C1與x軸交于點(diǎn)A、C,與y軸交于點(diǎn)B.
(1)求拋物線C1的表達(dá)式.
(2)若F(t,0)(﹣3<t<0)是x軸上的一點(diǎn),過點(diǎn)F作x軸的垂線交拋物線與點(diǎn)P,交直線AB于點(diǎn)E,過點(diǎn)P作PD⊥AB于點(diǎn)D.
①是否存在點(diǎn)F,使PE+PD的值最大,若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.
②連接PA,以AP為邊作圖示一側(cè)的正方形APMN,隨著點(diǎn)F的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)正方形APMN中的邊MN與y軸有且僅有一個(gè)交點(diǎn)時(shí),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,A(9,0),直線l:y=.P,Q兩點(diǎn)分別同時(shí)從O,A出發(fā),P點(diǎn)沿直線l向上運(yùn)動(dòng),Q點(diǎn)沿x軸向左運(yùn)動(dòng),它們的速度相同.連接PQ,當(dāng)
PQ⊥x軸時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P點(diǎn)的橫坐標(biāo)為m(m≥0),
(1)求m的取值范圍;
(2)如圖1,當(dāng)△OPQ是以OP為腰的等腰三角形時(shí),求m的值;
(3)如果以PQ為邊在上方作正方形PQEF,以AQ為邊在上方作正方形 QAGH,如圖2,
①用含m的代數(shù)式表示E點(diǎn)的坐標(biāo);
②當(dāng)正方形PQEF的某個(gè)頂點(diǎn)(Q點(diǎn)除外)落在正方形 QAGH的邊上,請(qǐng)直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行春季運(yùn)動(dòng)會(huì),需要在初三年級(jí)選取1或2名同學(xué)作為志愿者,初三(5)班的小熊、小樂和初三(6)班的小矛、小管4名同學(xué)報(bào)名參加.
(1)若從這4名同學(xué)中隨機(jī)選取1名志愿者,則被選中的這名同學(xué)恰好是初三(5)班同學(xué)的概率是;
(2)若從這4名同學(xué)中隨機(jī)選取2名志愿者,請(qǐng)用列舉法(畫樹狀圖或列表)求這2名同學(xué)恰好都是初三(6)班同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù): 1.414, 1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀探索
知識(shí)累計(jì)
解方程組
解:設(shè)a﹣1=x,b+2=y,原方程組可變?yōu)?/span>
解方程組得:即所以此種解方程組的方法叫換元法.
(1)拓展提高
運(yùn)用上述方法解下列方程組:
(2)能力運(yùn)用
已知關(guān)于x,y的方程組的解為,直接寫出關(guān)于m、n的方程組的解為_____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com