【題目】某網(wǎng)點嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:
銷售量n(件) | |
銷售單價m(元/件) |
(1)請計算第幾天該商品單價為25元/件?
(2)求網(wǎng)店第幾天銷售額為792元?
(3)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式;這30天中第幾天獲得的利潤最大?最大利潤是多少?
【答案】(1)第10天時該商品的銷售單價為25元/件;(2)網(wǎng)店第26天銷售額為792元;(3);這30天中第15天獲得的利潤最大,最大利潤是元.
【解析】
(1)將m=25代入m=20+x,求得x即可;
(2)令,解得方程即可;
(3)根據(jù)“總利潤=單件利潤×銷售量”可得函數(shù)解析式,將所得函數(shù)解析式配方成頂點式后,根據(jù)二次函數(shù)的性質(zhì)即可得.
解:(1)當時,,
解得:,
所以第10天時該商品的銷售單價為25元/件;
(2)根據(jù)題意,列方程為:
,解得(舍去)
答:網(wǎng)店第26天銷售額為792元.
(3)
;
(4)
,
∴當時,y最大=,
答:這30天中第15天獲得的利潤最大,最大利潤是元
科目:初中數(shù)學 來源: 題型:
【題目】某化妝品店老板到廠家購A、B兩種品牌店化妝品,若購進品牌的化妝品5套,品牌的化妝品6套,需要950元;若購進品牌的化妝品3套,品牌的化妝品2套,需要450元.
(1)求、兩種品牌的化妝品每套進價分別為多少元?
(2)若銷售1套品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元,根據(jù)市場需求,化妝品店老板決定,購進品牌化妝品的數(shù)量比購進品牌的化妝品數(shù)量的2倍還多4套,且品牌化妝品最多可購進40套,這樣化妝品全部售出后,可使總的獲利不少于1200元,問有幾種進貨方案?如何進貨?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c與x軸交于點A(1,0),B(3,0),且過點C(0,﹣3).
(1)求拋物線的解析式和頂點坐標;
(2)將該拋物線向左平移 個單位長度后,可使平移后的拋物線的頂點落在直線y=﹣x上,并寫出平移后拋物線的解析式: ;
(3)觀察圖象,寫出關(guān)于x的不等式ax2+bx+c+3>0的解集 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=6,E為AC邊上的點且AE=2EC,點D在BC邊上且滿足BD=DE,設BD=y,S△ABC=x,則y與x的函數(shù)關(guān)系式為( )
A.y=x2+B.y=x2+
C.y=x2+2D.y=x2+2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形是矩形,點、在坐標軸上, 是繞點順時針旋轉(zhuǎn)得到的,點在軸上,直線交軸于點,交于點,線段,.
(1)求直線的解析式;
(2)求的面積;
(3)點在軸上,平面內(nèi)是否存在點,使以點、、、為頂點的四邊形是矩形?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小哲的姑媽經(jīng)營一家花店,隨著越來越多的人喜愛“多肉植物”,姑媽也打算銷售“多肉植物”.小哲幫助姑媽針對某種“多肉植物”做了市場調(diào)查后,繪制了以下兩張圖表:
(1)如果在三月份出售這種植物,單株獲利多少元;
(2)請你運用所學知識,幫助姑媽求出在哪個月銷售這種多肉植物,單株獲利最大?(提示:單株獲利=單株售價﹣單株成本)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形是平行四邊形,分別是的平分線,且與對角線分別相交于點.
(1)求證:;
(2)連結(jié),判斷四邊形是否是平行四邊形,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=10,tanA=2,BE⊥AC于點E,D是線段BE上的一個動點,則CD+BD的最小值是( 。
A.2B.4C.5D.10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,F是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com