【題目】如圖,將長(zhǎng)方形 ABCD 沿 EF 折疊,使點(diǎn) D 與點(diǎn) B 重合,已知 AB 3 ,AD 9 .

1)求 BE 的長(zhǎng);

2)求 EF 的長(zhǎng).

【答案】15;(2

【解析】

1)首先根據(jù)BE=x,則DE=BE=x,AE=ADDE=9x,進(jìn)而利用勾股定理求出BE即可.

2)過(guò)EEHBCH,根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì)求得EH,HF的長(zhǎng),然后根據(jù)勾股定理解答即可.

1)設(shè)BE=x,則DE=BE=xAE=ADDE=9x.在RtABE中,AB2+AE2=BE2,則32+9x2=x2,解得:x=5

BE的長(zhǎng)為5;

2)過(guò)EEHBCH,則EH=AB=3BH=AE=9-5=4

ADBC,∴∠DEF=BFE

∵∠BEF=DEF,∴∠BEF=BFE,∴BE=BF=5,∴HF=BFBH=54=1,∴EF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:數(shù)和形是數(shù)學(xué)的兩個(gè)主要研究對(duì)象,我們經(jīng)常運(yùn)用數(shù)形結(jié)合,樹(shù)形轉(zhuǎn)化的方法解決一些數(shù)學(xué)問(wèn)題,小明在求同一坐標(biāo)軸上兩點(diǎn)間的距離時(shí)發(fā)現(xiàn),對(duì)于平面直角坐標(biāo)系內(nèi)任意兩點(diǎn)P1x1,y1),P2x2,y2),可通過(guò)構(gòu)造直角三角形利用圖1得到結(jié)論:P1P2=,他還利用圖2證明了線段P1P2的中點(diǎn)Px,y),P的坐標(biāo)公式:x=,y=

啟發(fā)應(yīng)用:

如圖3:在平面直角坐標(biāo)系中,已知A8,0),B06),C1,7),M經(jīng)過(guò)原點(diǎn)O及點(diǎn)A,B,

1)求⊙M的半徑及圓心M的坐標(biāo);

2)判斷點(diǎn)C與⊙M的位置關(guān)系,并說(shuō)明理由;

3)若∠BOA的平分線交AB于點(diǎn)N,交⊙M于點(diǎn)E,分別求出OE的表達(dá)式y1,過(guò)點(diǎn)M的反比例函數(shù)的表達(dá)式y2,并根據(jù)圖象,當(dāng)y2y10時(shí),請(qǐng)直接寫(xiě)出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O在線段AB上,(不與端點(diǎn)A、B重合),以點(diǎn)O為圓心,OA的長(zhǎng)為半徑畫(huà)弧,線段BP與這條弧相切與點(diǎn)P,直線CD垂直平分PB,交PB于點(diǎn)C,交AB于點(diǎn)D,在射線DC上截取DE,使DE=DB。已知AB=6,設(shè)OA=r。

(1)求證:OPED;

(2)當(dāng)∠ABP=30°時(shí),求扇形AOP的面積,并證明四邊形PDBE是菱形;

(3)過(guò)點(diǎn)OOFDE于點(diǎn)F,如圖所示,線段EF的長(zhǎng)度是否隨r的變化而變化?若不變,直接寫(xiě)出EF的值;若變化,直接寫(xiě)出EFr的關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車(chē)從A地出發(fā)沿同一路線駛向B地,甲車(chē)先出發(fā)勻速駛向B地.40分鐘后,乙車(chē)出發(fā),勻速行駛一段時(shí)間后,在途中的貨站裝貨耗時(shí)半小時(shí),由于滿載貨物,為了行駛安全,速度減少了50千米/時(shí),結(jié)果與甲車(chē)同時(shí)到達(dá)B地.甲乙兩車(chē)距A地的路 y(千米)與乙車(chē)行駛時(shí)間x(小時(shí))之間的函數(shù)圖象如圖所示.請(qǐng)結(jié)合圖象信息解答下列問(wèn)題:

1)直接寫(xiě)出a的值,并求甲車(chē)的速度;

2)求圖中線段EF所表示的yx的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線 y1 y2 相交于點(diǎn)C y1 x 軸交于點(diǎn) D ,與 y 軸交于點(diǎn)0,1, y2 x 交于點(diǎn) B3,0,與 y 軸交于點(diǎn) A ,下列說(shuō)法正確的個(gè)數(shù)有(

①y1 ;② OA OB ;③;④;⑤ AOB BCD .

A.2 個(gè)B.3個(gè)C.4 個(gè)D.5 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 xOy 中,點(diǎn) A 是一次函數(shù) y 3x 20 y x 12的交點(diǎn),過(guò)點(diǎn) A 分別作 x 、 y 軸的垂線段,垂足分別是 B C ,動(dòng)點(diǎn) P Q 1個(gè)單位/秒的速度,分別從點(diǎn)C 、 B 出發(fā),沿線段CA 、 BO 方向,向終點(diǎn) A 、O 運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t.

1)證明:無(wú)論運(yùn)動(dòng)時(shí)間t 0 t 8取何值,四邊形OPAQ 始終為平行四邊形;

2)當(dāng)四邊形OPAQ 為菱形時(shí),請(qǐng)求出此時(shí) PQ 的長(zhǎng)度及直線 PQ 的函數(shù)解析式;

3)當(dāng)OP 滿足 2 OP 5時(shí),連接 PQ ,直線 PQ y 軸交于點(diǎn) M ,取線段 AC 的中點(diǎn) N ,試確定 MNP 的面積 S 與運(yùn)動(dòng)的時(shí)間t 之間的函數(shù)關(guān)系式,并求出 S 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)梯子AB長(zhǎng)2.5米,頂端A靠在墻AC上,這時(shí)梯子下端B與墻角C距離為1.5米,梯子滑動(dòng)后停在DE的位置上,測(cè)得BD長(zhǎng)為0.5米,則梯子頂端A下落了( 。┟祝

A. 0.5 B. 1 C. 1.5 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某日的錢(qián)塘江觀潮信息如圖:

按上述信息,小紅將交叉潮形成后潮頭與乙地之間的距離s(千米)與時(shí)間t(分鐘)的函數(shù)關(guān)系用圖3表示,其中:“11:40時(shí)甲地交叉潮的潮頭離乙地12千米記為點(diǎn)A(0,12),點(diǎn)B坐標(biāo)為(m,0),曲線BC可用二次函數(shù)s=t2+bt+c(b,c是常數(shù))刻畫(huà).

(1)求m的值,并求出潮頭從甲地到乙地的速度;

(2)11:59時(shí),小紅騎單車(chē)從乙地出發(fā),沿江邊公路以0.48千米/分的速度往甲地方向去看潮,問(wèn)她幾分鐘后與潮頭相遇?

(3)相遇后,小紅立即調(diào)轉(zhuǎn)車(chē)頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過(guò)乙地后均勻加速,而單車(chē)最高速度為0.48千米/分,小紅逐漸落后.問(wèn)小紅與潮頭相遇到落后潮頭1.8千米共需多長(zhǎng)時(shí)間?(潮水加速階段速度v=v0+(t﹣30),v0是加速前的速度).

查看答案和解析>>

同步練習(xí)冊(cè)答案