(2003•北京)已知:在△ABC中,AD為∠BAC的平分線,以C為圓心,CD為半徑的半圓交BC的延長線于點E,交AD于點F,交AE于點M,且∠B=∠CAE,F(xiàn)E:FD=4:3.
(1)求證:AF=DF;
(2)求∠AED的余弦值;
(3)如果BD=10,求△ABC的面積.

【答案】分析:(1)欲證AF=DF,可以證明△AEF≌△DEF得出;
(2)求∠AED的余弦值,即求ME:DM,由已知條件,勾股定理,切割線定理的推論可以求出;
(3)根據(jù)△ABC的面積公式求出BC,AN的長是關(guān)鍵,根據(jù)題意由三角函數(shù)及相似比即可求出.
解答:(1)證明:∵AD平分∠BAC
∴∠BAD=∠DAC
∵∠B=∠CAE
∴∠BAD+∠B=∠DAC+∠CAE
∵∠ADE=∠BAD+∠B
∴∠ADE=∠DAE
∴EA=ED
∵DE是半圓C的直徑
∴∠DFE=90°
∴AF=DF(2分)

(2)解:連接DM
∵DE是半圓C的直徑
∴∠DME=90°
∵FE:FD=4:3
∴可設(shè)FE=4x,則FD=3x
∴DE=5x
∴AE=DE=5x,AF=FD=3x
∵AF•AD=AM•AE
∴3x(3x+3x)=AM•5x
∴AM=x
∴ME=AE-AM=5x-x=x
在Rt△DME中,cos∠AED=(5分)

(3)解:過A點作AN⊥BE于N
∵cos∠AED=
∴sin∠AED=
∴AN=AE=x
在△CAE和△ABE中
∵∠CAE=∠B,∠AEC=∠BEA
∴△CAE∽△ABE

∴AE2=BE•CE
∴(5x)2=(10+5x)•x
∴x=2
∴AN=x=
∴BC=BD+DC=10+×2=15
∴S△ABC=BC•AN=×15×=72(8分).
點評:本題考查相似三角形的判定,切割線定理,勾股定理,圓周角定理等知識點的綜合運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年中考數(shù)學模擬考試卷(浙教版)(解析版) 題型:解答題

(2003•北京)已知:拋物線y=ax2+4ax+t與x軸的一個交點為A(-1,0)
(1)求拋物線與x軸的另一個交點B的坐標;
(2)D是拋物線與y軸的交點,C是拋物線上的一點,且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
(3)E是第二象限內(nèi)到x軸、y軸的距離的比為5:2的點,如果點E在(2)中的拋物線上,且它與點A在此拋物線對稱軸的同側(cè),問:在拋物線的對稱軸上是否存在點P,使△APE的周長最?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省廣州市鐵一中學中考數(shù)學二模試卷(陳學峰)(解析版) 題型:解答題

(2003•北京)已知:拋物線y=ax2+4ax+t與x軸的一個交點為A(-1,0)
(1)求拋物線與x軸的另一個交點B的坐標;
(2)D是拋物線與y軸的交點,C是拋物線上的一點,且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
(3)E是第二象限內(nèi)到x軸、y軸的距離的比為5:2的點,如果點E在(2)中的拋物線上,且它與點A在此拋物線對稱軸的同側(cè),問:在拋物線的對稱軸上是否存在點P,使△APE的周長最小?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市中考數(shù)學模擬試卷(9)(解析版) 題型:解答題

(2003•北京)已知:拋物線y=ax2+4ax+t與x軸的一個交點為A(-1,0)
(1)求拋物線與x軸的另一個交點B的坐標;
(2)D是拋物線與y軸的交點,C是拋物線上的一點,且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
(3)E是第二象限內(nèi)到x軸、y軸的距離的比為5:2的點,如果點E在(2)中的拋物線上,且它與點A在此拋物線對稱軸的同側(cè),問:在拋物線的對稱軸上是否存在點P,使△APE的周長最?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年福建省廈門市五校聯(lián)考數(shù)學試卷(解析版) 題型:解答題

(2003•北京)已知:拋物線y=ax2+4ax+t與x軸的一個交點為A(-1,0)
(1)求拋物線與x軸的另一個交點B的坐標;
(2)D是拋物線與y軸的交點,C是拋物線上的一點,且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
(3)E是第二象限內(nèi)到x軸、y軸的距離的比為5:2的點,如果點E在(2)中的拋物線上,且它與點A在此拋物線對稱軸的同側(cè),問:在拋物線的對稱軸上是否存在點P,使△APE的周長最小?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年北京市中考數(shù)學試卷(解析版) 題型:解答題

(2003•北京)已知:拋物線y=ax2+4ax+t與x軸的一個交點為A(-1,0)
(1)求拋物線與x軸的另一個交點B的坐標;
(2)D是拋物線與y軸的交點,C是拋物線上的一點,且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
(3)E是第二象限內(nèi)到x軸、y軸的距離的比為5:2的點,如果點E在(2)中的拋物線上,且它與點A在此拋物線對稱軸的同側(cè),問:在拋物線的對稱軸上是否存在點P,使△APE的周長最小?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案