精英家教網 > 初中數學 > 題目詳情

如圖1至圖4,⊙均作無滑動滾動,⊙、⊙均表示⊙與線段AB、BC或弧AB相切于端點時刻的位置,⊙的周長為,請閱讀下列材料:

①如圖1,⊙從⊙的位置出發(fā),沿AB滾動到⊙的位置,當AB=時,⊙恰好自轉1周。

②如圖2,∠ABC相鄰的補角是n°, ⊙在∠ABC外部沿A-B-C滾動,在點B處,必須由⊙的位置轉到⊙的位置,⊙繞點B旋轉的角∠= n°, ⊙在點B處自轉周。

解答以下問題:

⑴在閱讀材料的①中,若AB=2,則⊙自轉       周;若AB=,則⊙自轉       周。在閱讀材料的②中,若∠ABC=120°,則⊙在點B處自轉       周;

若∠ABC=60°,則⊙在點B處自轉       周。

⑵如圖13-3,△ABC的周長為,⊙從與AB相切于點D的位置出發(fā),在△ABC外部,按順時針方向沿三角形滾動,又回到與AB相切于點D的位置,⊙自轉多少周?

 


⑶如圖13-4,半徑為2的⊙從半徑為18,圓心角為120°的弧的一個端點A(切點)開始先在外側滾動到另一個端點B(切點),再旋轉到內側繼續(xù)滾動,最后轉回到初始位置,⊙自轉多少周?

(1)

   (2)⊙共自轉了()周

  (3)⊙一共自轉了7圈

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖1至圖5,⊙O均作無滑動滾動,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O與線段AB或BC相切于端點時刻的位置,⊙O的周長為c.
閱讀理解:
(1)如圖1,⊙O從⊙O1的位置出發(fā),沿AB滾動到⊙O2的位置,當AB=c時,⊙O恰好自轉1周;
(2)如圖2,∠ABC相鄰的補角是n°,⊙O在∠ABC外部沿A-B-C滾動,在點B處,必須由⊙O1的位置旋轉到⊙O2的位置,⊙O繞點B旋轉的角∠O1BO2=n°,⊙O在點B處自轉
n
360
周.
實踐應用:
(1)在閱讀理解的(1)中,若AB=2c,則⊙O自轉
 
周;若AB=l,則⊙O自轉
 
周.在閱讀理解的(2)中,若∠ABC=120°,則⊙O在點B處自轉
 
周;若∠ABC=60°,則⊙O在點B處自轉
 
周;
(2)如圖3,∠ABC=90°,AB=BC=
1
2
c.⊙O從⊙O1的位置出發(fā),在∠ABC外部沿A-B-C滾動到⊙O4的位置,⊙O自轉
 
周.
拓展聯(lián)想:
(1)如圖4,△ABC的周長為l,⊙O從與AB相切于點D的位置出發(fā),在△ABC外部,按順時針方向沿三角形滾動,又回到與AB相切于點D的位置,⊙O自轉了多少周?請說明理由;
(2)如圖5,多邊形的周長為l,⊙O從與某邊相切于點D的位置出發(fā),在多邊形外部,按順時針方向沿多邊形滾動,又回到與該邊相切于點D的位置,直接寫出⊙O自轉的周數.
精英家教網

查看答案和解析>>

科目:初中數學 來源:第3章《圓》中考題集(73):3.7 弧長及扇形的面積(解析版) 題型:解答題

如圖1至圖5,⊙O均作無滑動滾動,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O與線段AB或BC相切于端點時刻的位置,⊙O的周長為c.
閱讀理解:
(1)如圖1,⊙O從⊙O1的位置出發(fā),沿AB滾動到⊙O2的位置,當AB=c時,⊙O恰好自轉1周;
(2)如圖2,∠ABC相鄰的補角是n°,⊙O在∠ABC外部沿A-B-C滾動,在點B處,必須由⊙O1的位置旋轉到⊙O2的位置,⊙O繞點B旋轉的角∠O1BO2=n°,⊙O在點B處自轉周.
實踐應用:
(1)在閱讀理解的(1)中,若AB=2c,則⊙O自轉______周;若AB=l,則⊙O自轉______周.在閱讀理解的(2)中,若∠ABC=120°,則⊙O在點B處自轉______周;若∠ABC=60°,則⊙O在點B處自轉______周;
(2)如圖3,∠ABC=90°,AB=BC=c.⊙O從⊙O1的位置出發(fā),在∠ABC外部沿A-B-C滾動到⊙O4的位置,⊙O自轉______周.
拓展聯(lián)想:
(1)如圖4,△ABC的周長為l,⊙O從與AB相切于點D的位置出發(fā),在△ABC外部,按順時針方向沿三角形滾動,又回到與AB相切于點D的位置,⊙O自轉了多少周?請說明理由;
(2)如圖5,多邊形的周長為l,⊙O從與某邊相切于點D的位置出發(fā),在多邊形外部,按順時針方向沿多邊形滾動,又回到與該邊相切于點D的位置,直接寫出⊙O自轉的周數.

查看答案和解析>>

科目:初中數學 來源:第27章《圓(一)》中考題集(36):27.4 弧長和扇形面積(解析版) 題型:解答題

如圖1至圖5,⊙O均作無滑動滾動,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O與線段AB或BC相切于端點時刻的位置,⊙O的周長為c.
閱讀理解:
(1)如圖1,⊙O從⊙O1的位置出發(fā),沿AB滾動到⊙O2的位置,當AB=c時,⊙O恰好自轉1周;
(2)如圖2,∠ABC相鄰的補角是n°,⊙O在∠ABC外部沿A-B-C滾動,在點B處,必須由⊙O1的位置旋轉到⊙O2的位置,⊙O繞點B旋轉的角∠O1BO2=n°,⊙O在點B處自轉周.
實踐應用:
(1)在閱讀理解的(1)中,若AB=2c,則⊙O自轉______周;若AB=l,則⊙O自轉______周.在閱讀理解的(2)中,若∠ABC=120°,則⊙O在點B處自轉______周;若∠ABC=60°,則⊙O在點B處自轉______周;
(2)如圖3,∠ABC=90°,AB=BC=c.⊙O從⊙O1的位置出發(fā),在∠ABC外部沿A-B-C滾動到⊙O4的位置,⊙O自轉______周.
拓展聯(lián)想:
(1)如圖4,△ABC的周長為l,⊙O從與AB相切于點D的位置出發(fā),在△ABC外部,按順時針方向沿三角形滾動,又回到與AB相切于點D的位置,⊙O自轉了多少周?請說明理由;
(2)如圖5,多邊形的周長為l,⊙O從與某邊相切于點D的位置出發(fā),在多邊形外部,按順時針方向沿多邊形滾動,又回到與該邊相切于點D的位置,直接寫出⊙O自轉的周數.

查看答案和解析>>

科目:初中數學 來源:第5章《中心對稱圖形(二)》?碱}集(30):5.8 弧長及扇形的面積(解析版) 題型:解答題

如圖1至圖5,⊙O均作無滑動滾動,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O與線段AB或BC相切于端點時刻的位置,⊙O的周長為c.
閱讀理解:
(1)如圖1,⊙O從⊙O1的位置出發(fā),沿AB滾動到⊙O2的位置,當AB=c時,⊙O恰好自轉1周;
(2)如圖2,∠ABC相鄰的補角是n°,⊙O在∠ABC外部沿A-B-C滾動,在點B處,必須由⊙O1的位置旋轉到⊙O2的位置,⊙O繞點B旋轉的角∠O1BO2=n°,⊙O在點B處自轉周.
實踐應用:
(1)在閱讀理解的(1)中,若AB=2c,則⊙O自轉______周;若AB=l,則⊙O自轉______周.在閱讀理解的(2)中,若∠ABC=120°,則⊙O在點B處自轉______周;若∠ABC=60°,則⊙O在點B處自轉______周;
(2)如圖3,∠ABC=90°,AB=BC=c.⊙O從⊙O1的位置出發(fā),在∠ABC外部沿A-B-C滾動到⊙O4的位置,⊙O自轉______周.
拓展聯(lián)想:
(1)如圖4,△ABC的周長為l,⊙O從與AB相切于點D的位置出發(fā),在△ABC外部,按順時針方向沿三角形滾動,又回到與AB相切于點D的位置,⊙O自轉了多少周?請說明理由;
(2)如圖5,多邊形的周長為l,⊙O從與某邊相切于點D的位置出發(fā),在多邊形外部,按順時針方向沿多邊形滾動,又回到與該邊相切于點D的位置,直接寫出⊙O自轉的周數.

查看答案和解析>>

科目:初中數學 來源:第24章《圓》中考題集(63):24.4 弧長和扇形面積(解析版) 題型:解答題

如圖1至圖5,⊙O均作無滑動滾動,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O與線段AB或BC相切于端點時刻的位置,⊙O的周長為c.
閱讀理解:
(1)如圖1,⊙O從⊙O1的位置出發(fā),沿AB滾動到⊙O2的位置,當AB=c時,⊙O恰好自轉1周;
(2)如圖2,∠ABC相鄰的補角是n°,⊙O在∠ABC外部沿A-B-C滾動,在點B處,必須由⊙O1的位置旋轉到⊙O2的位置,⊙O繞點B旋轉的角∠O1BO2=n°,⊙O在點B處自轉周.
實踐應用:
(1)在閱讀理解的(1)中,若AB=2c,則⊙O自轉______周;若AB=l,則⊙O自轉______周.在閱讀理解的(2)中,若∠ABC=120°,則⊙O在點B處自轉______周;若∠ABC=60°,則⊙O在點B處自轉______周;
(2)如圖3,∠ABC=90°,AB=BC=c.⊙O從⊙O1的位置出發(fā),在∠ABC外部沿A-B-C滾動到⊙O4的位置,⊙O自轉______周.
拓展聯(lián)想:
(1)如圖4,△ABC的周長為l,⊙O從與AB相切于點D的位置出發(fā),在△ABC外部,按順時針方向沿三角形滾動,又回到與AB相切于點D的位置,⊙O自轉了多少周?請說明理由;
(2)如圖5,多邊形的周長為l,⊙O從與某邊相切于點D的位置出發(fā),在多邊形外部,按順時針方向沿多邊形滾動,又回到與該邊相切于點D的位置,直接寫出⊙O自轉的周數.

查看答案和解析>>

同步練習冊答案