【題目】我校進(jìn)行“憲法知識”宣傳培訓(xùn)后進(jìn)行了一次測試.學(xué)生考分按標(biāo)準(zhǔn)劃分為不合格、合格、良好、優(yōu)秀四個等級,為了解全校的考試情況,對在校的學(xué)生隨機(jī)抽樣調(diào)查,得到如圖所示的條形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:

(1)該校抽樣調(diào)查的學(xué)生人數(shù)為________人,抽樣中考生分?jǐn)?shù)的中位數(shù)所在等級是________;

(2)抽樣中不及格的人數(shù)是多少?占被調(diào)查人數(shù)的百分比是多少?

【答案】(1)50,良好;(2)抽樣中不及格的人數(shù)是8人,占被調(diào)查人數(shù)的百分比是16%.

【解析】

(1)將所有頻數(shù)相加可得總數(shù);根據(jù)中位數(shù)的定義分析便可;(2)由統(tǒng)計圖可得相關(guān)信息;由×100%=16%可得不及格的人數(shù)占被調(diào)查人數(shù)的百分比.

(1)人數(shù)=8+14+18+10=50(人);第25,26的平均數(shù)為中位數(shù),在良好.

(2)8人,×100%=16%,抽樣中不及格的人數(shù)是8人,占被調(diào)查人數(shù)的百分比是16%.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DEABE,DFACF,若BD=CD、BE=CF.

(1)求證:AD平分∠BAC;

(2)直接寫出AB+ACAE之間的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】取一副三角板按圖①拼接,固定三角板ADC,將三角板ABC繞點(diǎn)A按順時針方向旋轉(zhuǎn)得到△ABC′,如圖②所示.設(shè)∠CAC′=α(0°<α≤45°).

(1)當(dāng)α=15°時,求證:AB∥CD;

(2)連接BD,當(dāng)0°<α≤45°時,∠DBC′+∠CAC′+∠BDC的度數(shù)是否變化,若變化 ,求出變化范圍;若不變,求出其度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某學(xué)生在旗桿EF與實驗樓CD之間的A處,測得∠EAF=60°,然后向左移動10米到B處,測得∠EBF=30°,∠CBD=45°,tan∠CAD=
(1)求旗桿EF的高(結(jié)果保留根號);
(2)求旗桿EF與實驗樓CD之間的水平距離DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:y1=2x+3與直線l2:y2=kx-1交于點(diǎn)A,點(diǎn)A的橫坐標(biāo)為-1,且直線l1x軸交于點(diǎn)B,與y軸交于點(diǎn)D,直線l2y軸交于點(diǎn)C.

(1)直線l2對應(yīng)的函數(shù)表達(dá)式;

(2)連接BC,求SABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當(dāng)兩個三角形重疊部分的面積為32時,它移動的距離AA′等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級(1)班的宣傳委員在辦黑板報時,采用了下面的圖案作為邊框,其中每個黑色六邊形與6個自色六邊形相鄰,若一段邊框上有25個黑色六邊形,則這段邊框共有白色六邊形

A. 100 B. 102 C. 98 D. 150

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】希望中學(xué)開展以我最喜歡的職業(yè)為主題的調(diào)查活動,通過對學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制的不完整的統(tǒng)計圖,則下列說法中,不正確的是( )

A. 被調(diào)查的學(xué)生有200

B. 被調(diào)查的學(xué)生中喜歡教師職業(yè)的有40

C. 被調(diào)查的學(xué)生中喜歡其他職業(yè)的占40%

D. 扇形圖中,公務(wù)員部分所對應(yīng)的圓心角為72°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ACBC,BDAD,AC 與BD 交于O,AC=BD.

求證:(1)BC=AD;

(2)OAB是等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案