【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,點(diǎn)D在線段AB上,從點(diǎn)B出發(fā),以2cm/s的速度向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t秒。
(1)點(diǎn)D在運(yùn)動(dòng)t秒后,BD= cm(用含有t的式子表示)
(2)AB=cm,AB邊上的高為cm;
(3)點(diǎn)D在運(yùn)動(dòng)過(guò)程中,當(dāng)△BCD為等腰三角形時(shí),求t的值.
【答案】(1);(2)50;24;(3)t的值為15s或18s或12.5s.
【解析】
(1)根據(jù)點(diǎn)D以2cm/s的速度向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t秒,即可表示出;
(2)利用勾股定理求出AB的長(zhǎng),再利用三角形面積公式即可求得AB邊上的高;
(3)分三種情況:①當(dāng)BD=BC=30cm時(shí)得到2t=30,即可得到結(jié)果;
②當(dāng)CD=CB=30cm時(shí),作CE⊥AB于E,則,由(1)得CE=24,由勾股定理求出BE,即可得出結(jié)果;
③當(dāng)DB=DC時(shí),∠BCD=∠B,證明DA=DC,得出AD=DB=AB,即可得出結(jié)果.
(1) ∵點(diǎn)D以2cm/s的速度向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t秒
∴
故答案為:
(2)由勾股定理得,
設(shè)AB邊上的高為h,
∴,
解得:
故答案為:50;24.
(3) 分三種情況:
①當(dāng)BD=BC=30cm時(shí),2t=30
∴t=15(s)
②當(dāng)CD=CB=30cm時(shí),作CE⊥AB于E,如圖所示:
則
由(2)得,AB邊上的高CE=24,
在中,由勾股定理得:
∴
③當(dāng)DB=DC時(shí),∠BCD=∠B
∵∠A=90°﹣∠B,∠ACD=90°﹣∠BCD,
∴∠ACD=∠A
∴DA=DC
∴AD=DB=AB=25(cm)
∴
綜上所述,t的值為15s或18s或12.5s.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AC,BD相交于點(diǎn)O,點(diǎn)E是OA的中點(diǎn),連接BE并延長(zhǎng)交AD于點(diǎn)F,已知S△AEF=4,則下列結(jié)論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是( 。
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米.如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面2米,則小巷的寬度為( )
A.0.7米B.1.5米C.2.2米D.2.4米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將直線y=x向下平移b個(gè)單位長(zhǎng)度后得到直線l,l與反比例函數(shù)y=(k>0,x>0)的圖象相交于點(diǎn)A,與x軸相交于點(diǎn)B,則OA2﹣OB2=10,則k的值是( )
A. 5 B. 10 C. 15 D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD邊AD沿折痕AE折疊,使點(diǎn)D落在BC上的F處,已知AB=6,△ABF的面積為24,則EC等于( 。
A.2B.C.4D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長(zhǎng)線和∠DCK的角平分線CF的反向延長(zhǎng)線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=( 。
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時(shí),若AB=2,CE=2,求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了對(duì)學(xué)生進(jìn)行革命傳統(tǒng)教育,紅旗中學(xué)開展了“清明節(jié)祭掃”活動(dòng).全校學(xué)生從學(xué)校同時(shí)出發(fā),步行米到達(dá)烈士紀(jì)念館.學(xué)校要求九班提前到達(dá)目的地,做好活動(dòng)的準(zhǔn)備工作.行走過(guò)程中,九(1)班步行的平均速度是其他班的倍,結(jié)果比其他班提前分鐘到達(dá).分別求九(1)班、其他班步行的平均速度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com