【題目】對于二次函數(shù)y=x2﹣2mx﹣3,有下列說法:

①它的圖象與x軸有兩個公共點;

②如果當x≤1yx的增大而減小,則m=1;

③如果將它的圖象向左平移3個單位后過原點,則m=﹣1;

④如果當x=4時的函數(shù)值與x=2008時的函數(shù)值相等,則當x=2012時的函數(shù)值為﹣3.

其中正確的說法是_____.(把你認為正確說法的序號都填上)

【答案】①④

【解析】

①根據(jù)函數(shù)與方程的關系解答;②找到二次函數(shù)的對稱軸,再判斷函數(shù)的增減性;③將m=-1代入解析式,求出和x軸的交點坐標,即可判斷;④根據(jù)坐標的對稱性,求出m的值,得到函數(shù)解析式,將m=2012代入解析式即可.

①∵△=4m2-4×(-3)=4m2+12>0,∴它的圖象與x軸有兩個公共點,故①正確;

②∵當x≤1yx的增大而減小,函數(shù)的對稱軸x=-≥1,

∴在直線x=1的右側(包括與直線x=1重合),

-≥1,即m≥1,故②錯誤;

③將m=-1代入解析式,得y=x2+2x-3,當y=0時,得x2+2x-3=0,即(x-1)(x+3)=0,

解得,x1=1,x2=-3,將圖象向左平移3個單位后不過原點,故③錯誤;

④∵當x=4時的函數(shù)值與x=2008時的函數(shù)值相等,

∴對稱軸為x==1006,

-=1006,m=1006,

原函數(shù)可化為y=x2-2012x-3,當x=2012時,y=20122-2012×2012-3=-3,故④正確,

故答案為:①④.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了“迎國慶,向祖國母親獻禮”,某建筑公司承建了修筑一段公路的任務,指派甲、乙兩隊合作,18天可以完成,共需施工費126000元;如果甲、乙兩隊單獨完成此項工程,乙隊所用時間是甲隊的1.5倍,乙隊每天的施工費比甲隊每天的施工費少1000.

1)甲、乙兩隊單獨完成此項工程,各需多少天?

2)為了盡快完成這項工程任務,甲、乙兩隊通過技術革新提高了速度,同時,甲隊每天的施工費提高了,乙隊每天的施工費提高了,已知兩隊合作12天后,由甲隊再單獨做2天就完成了這項工程任務,且所需施工費比計劃少了21200.

①分別求出甲、乙兩隊技術革新前每天的施工費用;

②求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠BAC和∠ABC的平分線相交于點O,過點OEFABBCF,交ACE,過點OODBCD,下列四個結論:

①∠AOB90°+C

AE+BFEF;

③當∠C90°時,E,F分別是AC,BC的中點;

④若ODaCE+CF2b,則SCEFab

其中正確的是( 。

A.①②B.③④C.①②④D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC=5,AB的垂直平分線DEAB、ACE、D.

(1)若BCD的周長為8,求BC的長;

(2)若∠A=40°,求∠DBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知、兩地之間有一條270千米的公路,甲、乙兩車同時出發(fā),甲車以每小時60千米/時的速度沿此公路從地勻速開往地,乙車從地沿此公路勻速開往地,兩車分別到達目的地后停止甲、乙兩車相距的路程(千米)與甲車的行駛時間()之間的函數(shù)關系如圖所示:

(1)乙年的速度為______千米/時,_____,______.

(2)求甲、乙兩車相遇后之間的函數(shù)關系式,并寫出相應的自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠MON60°,點AOM邊上一點,點B,CON邊上兩點,且ABAC,作點B關于OM的對稱點點D,連接AD,CDOD.

1)依題意補全圖形;

2)猜想∠DAC °,并證明;

3)猜想線段OA、OD、OC的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等腰直角三角形中,,邊上,連接,連接

1)求證:

2)點關于直線的對稱點為,連接

①補全圖形并證明

②利用備用圖進行畫圖、試驗、探究,找出當三點恰好共線時點的位置,請直接寫出此時的度數(shù),并畫出相應的圖形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級學生共900人,為了解這個年級學生的體能,從中隨機抽取部分學生進行1 min的跳繩測試,并指定甲、乙、丙、丁四名同學對這次測試結果的數(shù)據(jù)作出整理,下圖是這四名同學提供的部分信息:

甲:將全體測試數(shù)據(jù)分成6組繪成直方圖(如圖);

乙:跳繩次數(shù)不少于105次的同學占96%;

丙:第①、②兩組頻率之和為0.12,且第②組與第⑥組頻數(shù)都是12;

丁:第②、③、④組的頻數(shù)之比為4:17:15。

根據(jù)這四名同學提供的材料,下面有四個推斷:

①這次跳繩測試共抽取了150人;②該年級跳繩次數(shù)的中位數(shù)在115~125之間

③第4組的人數(shù)為45人 ④如果跳繩次數(shù)不少于135次為優(yōu)秀,根據(jù)這次調查結果,估計全年級達到跳繩優(yōu)秀的人數(shù)可以超過250人,其中合理的個數(shù)是( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F.

(1)求證:ADE≌△BFE;

(2)若DF平分ADC,連接CE.試判斷CE和DF的位置關系,并說明理由.

查看答案和解析>>

同步練習冊答案