(1)如圖1,拋物線C1:y=ax2+bx+c的開口向下,頂點為D點,與y軸交于點,且經(jīng)過A(-1,0),B(3,0)兩點,若△ABD的面積為8.
①求拋物線C1的解析式;
②Q是拋物線C1上的一個動點,當(dāng)△QBC的內(nèi)心落在x軸上時,求此時點Q的坐標(biāo);
(2)如圖2,將(1)中的拋物線C1向右平移t(t>0)個單位長度,得到拋物線C2,頂點為E,拋物線C1、C2相交于P點,設(shè)△PDE的面積為S,判斷
St3
是否為定值?請說明理由.
精英家教網(wǎng)
分析:(1)①由拋物線C1經(jīng)過A(-1,0),B(3,0)兩點,即可采用兩點法設(shè)拋物線C1的解析式為y=a(x+1)(x+3),又由AB=4,S△ABD=8,即可求得a的值,求得拋物線C1的解析式;
②首先由OC=OB=3,∠BOC=90°,求得∠OBC的度數(shù),然后過B作∠ABQ=45°交x軸于M,交拋物線C1于Q點,即可求得直線BQ的解析式,然后借助于方程即可求得點Q的坐標(biāo);
(2)首先過P作PN∥x軸與拋物線C1另一交點記為N,連接DN,過P作直線PH⊥DE于H,由平移,易證得△PDE是等腰三角形,然后由點H是DE的中點,求得H與P的坐標(biāo),則問題得解.
解答:解:(1)①∵拋物線C1經(jīng)過A(-1,0),B(3,0)兩點,
∴y=a(x+1)(x+3)=a(x-1)2-4a,(1分)
∴D(1,-4a),
∵AB=4,S△ABD=8,
∴-4a=4,
∴a=-1,(2分)
所以拋物線C1為:y=-x2+2x+3,(3分)
②點C(0,3),
∵OC=OB=3,∠BOC=90°,
∴∠OBC=45°,
過B作∠ABQ=45°交y軸于M,交拋物線C1于Q點,
則△QBC的內(nèi)心落在x軸上,(4分).
如圖1:M(0,-3),直線BQ為:y=x-3,(5分)
設(shè)Q(n,-n2+2n+3),則-n2+2n+3=n-3,(6分)
解得:n1=-2,n2=3,(不合題意舍去)
所以Q(-2,-5);(7分)
精英家教網(wǎng)

(2)過P作PN∥x軸與拋物線C1另一交點記為N,連接DN,過P作直線PH⊥DE于H,
如圖2:由平移得:DN與PE平行且相等
由拋物線的對稱性得:PD=DN,
∴PD=DE,△PDE是等腰三角形(8分)
∴點H是DE的中點,
∴H(
1
2
t+1,4),(9分)
當(dāng)x=
1
2
t+1時,y=-
1
4
t2+4,
∴P(
1
2
t+1,-
1
4
t2+4),(10分)
∴PH=4-(-
1
4
t2+4)=
1
4
t2,(11分)
又∵DE=t,
S
t3
=
1
2
×
1
4
t2•t
t3
=
1
8
為定值.(12分)
點評:此題考查了二次函數(shù)的綜合應(yīng)用,等腰三角形的性質(zhì),直角三角形的性質(zhì)等知識.此題綜合性很強,難度很大,解題的關(guān)鍵是方程思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知二次函數(shù)的圖象是經(jīng)過點A(1,0),B(3,0),E(0,6)三點的一條拋物線.
(1)求這條拋物線的解析式;
(2)如圖,設(shè)拋物線的頂點為C,對稱軸交x軸于點D,在y軸正半軸上有一點P,且以A、O、P為頂點的三角形與△ACD相似,求P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高”(h).我們可得出一種計算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標(biāo)為點C(1,4),交x軸于點A(3,0),點P是拋物線(在第一象限內(nèi))上的一個動點.
(1)求拋物線的解析式;
(2)若點B為拋物線與y軸的交點,求直線AB的解析式;
(3)在(2)的條件下,設(shè)拋物線的對稱軸分別交AB、x軸于點D、M,連接PA、PB,當(dāng)P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB
(4)在(2)的條件下,設(shè)P點的橫坐標(biāo)為x,△PAB的鉛垂高為h、面積為S,請分別寫出h和S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,矩形ABCD,點C與坐標(biāo)原點O重合,點A在x軸上,點B坐標(biāo)為(3,
3
),求經(jīng)過A、B、C三點拋物線的解析式;
(2)如圖2,拋物線E:y=-
1
2
x2+bx+c
經(jīng)過坐標(biāo)原點O,其頂點在y軸左側(cè),以O(shè)為頂點作矩形OADC,A、C為拋物線E上兩點,若AC∥x軸,AD=2CD,則拋物線的解析式是
 
;
(3)如圖3,點A、B、C分別為拋物線F:y=ax2+bx+c(a<0)上的點,點B在對稱軸右側(cè),點D在拋物線外,順次連接A、B、C、D四點,所成四邊形為矩形,且AC∥x軸,AD=2CD,求矩形ABCD的周長(用含a的式子表示).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將拋物線y=-
1
2
x2
平移后經(jīng)過原點O和點A(6,0),平移后的拋物線的頂點為點B,對稱軸與拋物線y=-
1
2
x2
相交于點C,則圖中直線BC與兩條拋物線圍成的陰影部分的面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高”(h).我們可得出一種計算三角形面積的新方法:S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問題:
如圖2,拋物線頂點坐標(biāo)為點C(1,4),交x軸于點A(3,0),點P是拋物線(在第一象限內(nèi))上的一個動點.
(1)求拋物線的解析式;
(2)若點B為拋物線與y軸的交點,求直線AB的解析式;
(3)設(shè)點P是拋物線(第一象限內(nèi))上的一個動點,是否存在一點P,使S△PAB=S△CAB?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案