【題目】在平面直角坐標(biāo)系中,反比例函數(shù)與二次函數(shù)y=k(x2+x-1)的圖象交于點A(1,k)和點B(-1,-k).
(1)當(dāng)k=-2時,求反比例函數(shù)的解析式;
(2)要使反比例函數(shù)與二次函數(shù)都是y隨著x的增大而增大,求k應(yīng)滿足的條件以及x的取值范圍.
(3)設(shè)二次函數(shù)的圖象的頂點為Q,當(dāng)△ABQ是以AB為斜邊的直角三角形時,求k的值.
【答案】(1)y=-(2)k<0 x≤-(3)k=±
【解析】
解:(1)因為k=-2,所以A(1,-2),
設(shè)反比例函數(shù)為y=,因為點A在函數(shù)的圖象上,所以-2=,
解得k1=-2,
反比例函數(shù)解析式為y=-.
(2)由y=k(x2+x-1)=k-k,得拋物線對稱軸為直線x=-,
當(dāng)k>0時,反比例函數(shù)不存在y隨著x的增大而增大的取值范圍,所以k<0,
此時,當(dāng)x<0或x>0時,反比例函數(shù)值y隨著x的增大而增大;
當(dāng)x≤-時,二次函數(shù)值y隨著x的增大而增大,所以自變量x的取值范圍是x≤-.
(3)由題(2)得點Q的坐標(biāo)為,
因為AQ⊥BQ,點O是AB的中點,
所以OQ=AB=OA,
得+k2=12+k2,解得k=±.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=BC,點D在射線BC上(不與點B、C重合),連接AD,將AD繞點D順時針旋轉(zhuǎn)90°得到DE,連接BE.
(1)如圖1,點D在BC邊上.
①依題意補(bǔ)全圖1;
②作DF⊥BC交AB于點F,若AC=8,DF=3,求BE的長;
(2)如圖2,點D在BC邊的延長線上,用等式表示線段AB、BD、BE之間的數(shù)量關(guān)系(直接寫出結(jié)論).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,地面上小山的兩側(cè)有,兩地,為了測量,兩地的距離,讓一熱氣球從小山西側(cè)地出發(fā)沿與成角的方向,以每分鐘的速度直線飛行,分鐘后到達(dá)處,此時熱氣球上的人測得與成角,請你用測得的數(shù)據(jù)求,兩地的距離長.(結(jié)果用含非特殊角的三角函數(shù)和根式表示即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B,與y軸交于點C,點B坐標(biāo)為(6,0),點C坐標(biāo)為(0,6),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接BD.
(1)求拋物線的解析式及點D的坐標(biāo);
(2)點F是拋物線上的動點,當(dāng)∠FBA=∠BDE時,求點F的坐標(biāo);
(3)若點P是x軸上方拋物線上的動點,以PB為邊作正方形PBFG,隨著點P的運(yùn)動,正方形的大小、位置也隨著改變,當(dāng)頂點F或G恰好落在y軸上時,請直接寫出點P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,拋物線的頂點D的坐標(biāo)為(1,-4),且與y軸交于點
C(0,3)
求該函數(shù)的關(guān)系式;
求改拋物線與x軸的交點A,B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于多項式Ax2bxc(b、c為常數(shù)),作如下探究:
(1)不論x取何值,A都是非負(fù)數(shù),求b與c滿足的條件;
(2)若A是完全平方式,
①當(dāng)c=9時,b= ;當(dāng)b=3時,c= ;
②若多項式Bx2dxc與A有公因式,求d的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組的同學(xué)在一次數(shù)學(xué)活動中,為了測量某建筑物AB的高,他們來到與建筑物AB在同一平地且相距12米的建筑物CD上的C處觀察,測得某建筑物頂部A的仰角為30°、底部B的俯角為45°.求建筑物AB的高(精確到1米).(可供選用的數(shù)據(jù):≈1.4,≈1.7).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分線BE交AC于E.
(1)求證:AE=BC;
(2)如圖2,過點E作EF∥BC交AB于F,將△AEF繞點A逆時針旋轉(zhuǎn)角α(0°<α<144°)得到△AE′F′,連結(jié)CE′、BF′,求證:CE′=BF′.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,AB=AC=2,∠A=90°,D為BC中點,點E,F分別在AB,AC上,且BE=AF,
(1)求證:ED=FD,
(2)求證:DF⊥DE,
(3)求四邊形AFDE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com