【題目】(2016湖北省荊州市第25題)閱讀:我們約定,在平面直角坐標(biāo)系中,經(jīng)過某點且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫該點的特征線.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=x+4.

問題與探究:如圖,在平面直角坐標(biāo)系中有正方形OABC,點B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過B、C兩點,頂點D在正方形內(nèi)部.

(1)直接寫出點D(m,n)所有的特征線;

(2)若點D有一條特征線是y=x+1,求此拋物線的解析式;

(3)點P是AB邊上除點A外的任意一點,連接OP,將OAP沿著OP折疊,點A落在點A的位置,當(dāng)點A在平行于坐標(biāo)軸的D點的特征線上時,滿足(2)中條件的拋物線向下平移多少距離,其頂點落在OP上?

【答案】(1)、x=m,y=n,y=x+nm,y=x+m+n;(2)、y=(x2)2+3;(3)、

【解析】

試題分析:(1)、根據(jù)特征線直接求出點D的特征線;(2)、由點D的一條特征線和正方形的性質(zhì)求出點D的坐標(biāo),從而求出拋物線解析式;(3)、分平行于x軸和y軸兩種情況,由折疊的性質(zhì)計算即可.

試題解析:(1)、點D(m,n), 點D(m,n)的特征線是x=m,y=n,y=x+nm,y=x+m+n;

(2)、點D有一條特征線是y=x+1, nm=1, n=m+1

拋物線解析式為 y=(xm)2+m+1,

四邊形OABC是正方形,且D點為正方形的對稱軸,D(m,n), B(2m,2m),

(2mm)2+n=2m,將n=m+1帶入得到m=2,n=3; D(2,3), 拋物線解析式為y=(x2)2+3

(3)、如圖,當(dāng)點A在平行于y軸的D點的特征線時,

根據(jù)題意可得,D(2,3), OA=OA=4,OM=2, ∴∠AOM=60°, ∴∠AOP=AOP=30°

MN==, 拋物線需要向下平移的距離=3=

當(dāng)點A在平行于x軸的D點的特征線時,

頂點落在OP上, A與D重合, A(2,3), 設(shè)P(4,c)(c>0),

由折疊有,PD=PA, =c, c= P(4, 直線OP解析式為y=

N(2,), 拋物線需要向下平移的距離=3=,

拋物線向下平移距離,其頂點落在OP上.

考點(1)、折疊的性質(zhì);(2)、正方形的性質(zhì);(3)、特征線的理解

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.

(1)求證:BE=CD;

(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016四川省樂山市第16題)在直角坐標(biāo)系xOy中,對于點P(x,y)和Q(x,y′),給出如下定義:若,則稱點Q為點P的“可控變點”.

例如:點(1,2)的“可控變點”為點(1,2),點(﹣1,3)的“可控變點”為點(﹣1,﹣3).

(1)若點(﹣1,﹣2)是一次函數(shù)圖象上點M的“可控變點”,則點M的坐標(biāo)為 ;

(2)若點P在函數(shù)的圖象上,其“可控變點”Q的縱坐標(biāo)y′的取值范圍是,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖1,在△ABC中,∠ACB為銳角,點D為射線BC上一點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.(提示:正方形的四條邊都相等,四個角都是直角)

(1)如果AB=AC,∠BAC=90°,

①當(dāng)點D在線段BC上時(與點B不重合),如圖2,線段CF、BD所在直線的位置關(guān)系為______,線段CF、BD的數(shù)量關(guān)系為______;

②當(dāng)點D在線段BC的延長線上時,如圖3,①中的結(jié)論是否仍然成立,并說明理由;

(2)如果AB≠AC,∠BAC是銳角,點D在線段BC上,當(dāng)∠ACB滿足 條件時,CF⊥BC(點C、F不重合),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是( )
A.7a+a=7a2
B.5y﹣3y=2
C.3x2y﹣2yx2=x2y
D.3a+2b=5ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016廣西省南寧市第24題)如圖,已知拋物線經(jīng)過原點O,頂點為A(1,1),且與直線y=x2交于B,C兩點.

(1)求拋物線的解析式及點C的坐標(biāo);

(2)求證:ABC是直角三角形;

(3)若點N為x軸上的一個動點,過點N作MNx軸與拋物線交于點M,則是否存在以O(shè),M,N為頂點的三角形與ABC相似?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:

1.新知學(xué)習(xí)

若把將一個平面圖形分為面積相等的兩個部分的直線叫做該平面圖形的“面線”,其“面線”被該平面圖形截得的線段叫做該平面圖形的“面徑”(例如圓的直徑就是圓的“面徑”).

2.解決問題

已知等邊三角形ABC的邊長為2.

(1)如圖一,若AD⊥BC,垂足為D,試說明AD是△ABC的一條面徑,并求AD的長;

(2)如圖二,若ME∥BC,且ME是△ABC的一條面徑,求面徑ME的長;

(3)如圖三,已知D為BC的中點,連接AD,M為AB上的一點(0<AM<1),E是DC上的一點,連接ME,ME與AD交于點O,且S△MOA=S△DOE

①求證:ME是△ABC的面徑;

②連接AE,求證:MD∥AE;

(4)請你猜測等邊三角形ABC的面徑長l的取值范圍(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有5條線段,它們的長度分別為1cm,2cm,3cm,4cm,5cm,以其中三條線段為邊長,可組成不同的三角形的個數(shù)為( 。
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形的每一個外角都等于它相鄰的內(nèi)角的一半,則這個多邊形的邊數(shù)是(

A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊答案