【題目】某汽車租賃公司準(zhǔn)備購買A,B兩種型號(hào)的新能源汽車10輛.汽車廠商提供了如下兩種購買方案:
(1)A,B兩種型號(hào)的新能源汽車每輛的價(jià)格各是多少萬元?
(2)為了支持新能源汽車產(chǎn)業(yè)的發(fā)展,國(guó)家對(duì)新能源汽車發(fā)放一定的補(bǔ)貼.已知國(guó)家對(duì)A, B兩種型號(hào)的新能源汽車補(bǔ)貼資金分別為每輛3萬元和4萬元.通過測(cè)算,該汽車租賃公司在此次購車過程中,可以獲得國(guó)家補(bǔ)貼資金不少于34萬元,公司需要支付資金不超過145萬元,請(qǐng)你通過計(jì)算求出有幾種購買方案.
【答案】(1)答:A型號(hào)的新能源汽車每輛價(jià)格15萬元,B型號(hào)的新能源汽車每輛價(jià)格20萬元;(2)有三種購買方案.
【解析】
(1)分別設(shè)A,B型號(hào)的新能源汽車每輛的價(jià)格為x,y萬元,根據(jù)表格可列出一個(gè)二元一次方程組,解此方程組即可得出答案;
(2)設(shè)購買A型車a輛,則購買B型車(10-a)輛,根據(jù)題意可列出一個(gè)一元一次不等式組,解此不等式組,取其整數(shù)解,即可得出答案.
解:(1)設(shè)A型號(hào)的新能源汽車每輛價(jià)格x萬元,B型號(hào)的新能源汽車每輛價(jià)格y萬元.
由題意可得:
解得:
答:A型號(hào)的新能源汽車每輛價(jià)格15萬元,B型號(hào)的新能源汽車每輛價(jià)格20萬元.
(2)設(shè)購買A型車a輛,則購買B型車(10-a)輛.
由題意可得
解得:
∴a的取值為4,5或6.
因此有三種購買方案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)P在x軸上,點(diǎn)A(1,1),O是坐標(biāo)原點(diǎn),且△AOP是等腰三角形,則點(diǎn)P的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有兩部不同型號(hào)的手機(jī)(分別記為A,B)和與之匹配的2個(gè)保護(hù)蓋(分別記為a,b)散亂地放在桌子上.
(1)若從手機(jī)中隨機(jī)取一部,再從保護(hù)蓋中隨機(jī)取一個(gè),求恰好匹配的概率;
(2)若從手機(jī)和保護(hù)蓋中隨機(jī)取兩個(gè),用畫樹狀圖法或列表法求恰好匹配的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=2x+n與x軸、y軸分別交于點(diǎn)A、B,與雙曲線在第一象限內(nèi)交于點(diǎn)C(1,m),直線CQ的解析式為:y=kx+b(k≠0)
(1)求m和n的值;
(2)過x軸上的點(diǎn)D(3,0)作平行于y軸的直線l,分別與直線AB和雙曲線交于點(diǎn)P、Q,求△APQ的面積.
(3)直接寫出的解集
(4)直接寫出直方程的解。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中:
①長(zhǎng)為的線段沿某一方向平移后,平移后線段的長(zhǎng)為;
②三角形的高在三角形內(nèi)部;
③六邊形的內(nèi)角和是外角和的兩倍;
④平行于同一直線的兩直線平行;
⑤兩個(gè)角的兩邊分別平行,則這兩個(gè)角相等,真命題個(gè)數(shù)有( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了讓同學(xué)們走向操場(chǎng)、積極參加體育鍛煉,啟動(dòng)了“學(xué)生陽光體育運(yùn)動(dòng)”,張明和李亮在體育運(yùn)動(dòng)中報(bào)名參加了百米訓(xùn)練小組.在近幾次百米訓(xùn)練中,教練對(duì)他們兩人的測(cè)試成績(jī)進(jìn)行了統(tǒng)計(jì)和分析,請(qǐng)根據(jù)圖表中的信息解答以下問題:
平均數(shù) | 中位數(shù) | 方差 | |
張明 | 13.3 | 0.004 | |
李亮 | 13.3 | 0.02 |
(1)張明第2次的成績(jī)?yōu)椋?/span> 秒;
(2)張明成績(jī)的平均數(shù)為: ;李亮成績(jī)的中位數(shù)為: ;
(3)現(xiàn)在從張明和李亮中選擇一名成績(jī)優(yōu)秀的去參加比賽,若你是他們的教練,應(yīng)該選擇誰?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)(﹣5)﹣(+3)+(﹣9)﹣(﹣7)
(2)(+5)+(﹣3)+(﹣6)+(﹣15)
(3)|﹣6|+(﹣8)+|﹣3﹣|
(4)78×(﹣)+(﹣11)×(﹣)+(﹣33)×0.6
(5)(﹣2)2010×(﹣0.5)2009+(﹣6)×7
(6)﹣14﹣×[2﹣(﹣3)﹣2]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)購進(jìn)一批單價(jià)為4元的日用品.若按每件5元的價(jià)格銷售,每月能賣出300件;若按每件6元的價(jià)格銷售,每月能賣出200件,假定每月銷售件數(shù)(件)與價(jià)格(元/件)之間滿足一次函數(shù)關(guān)系.
(1)、試求與之間的函數(shù)關(guān)系式;
(2)、當(dāng)銷售價(jià)格定為多少時(shí),才能使每月的利潤(rùn)最大?每月的最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,完成相應(yīng)學(xué)習(xí)任務(wù):
四點(diǎn)共圓的條件
我們知道,過任意一個(gè)三角形的三個(gè)頂點(diǎn)能作一個(gè)圓,過任意一個(gè)四邊形的四個(gè)頂點(diǎn)能作一個(gè)圓嗎?小明經(jīng)過實(shí)踐探究發(fā)現(xiàn):過對(duì)角互補(bǔ)的四邊形的四個(gè)頂點(diǎn)能作一個(gè)圓,下面是小明運(yùn)用反證法證明上述命題的過程:
已知:在四邊形ABCD中,∠B+∠D=180°.
求證:過點(diǎn)A、B、C、D可作一個(gè)圓.
證明:如圖(1),假設(shè)過點(diǎn)A、B、C、D四點(diǎn)不能作一個(gè)圓,過A、B、C三點(diǎn)作圓,若點(diǎn)D在圓外,設(shè)AD與圓相交于點(diǎn)E,連接CE,則∠B+∠AEC=180°,而已知∠B+∠D=180°,所以∠AEC=∠D,而∠AEC是△CED的外角,∠AEC>∠D,出現(xiàn)矛盾,故假設(shè)不成立,因此點(diǎn)D在過A、B、C三點(diǎn)的圓上.
如圖(2)假設(shè)過點(diǎn)A、B、C、D四點(diǎn)不能作一個(gè)圓,過A、B、C三點(diǎn)作圓,若點(diǎn)D在圓內(nèi),設(shè)AD的延長(zhǎng)線與圓相交于點(diǎn)E,連接CE,則∠B+∠AEC=180°,而已知∠B+∠ADC=180°,所以∠AEC=∠ADC,而∠ADC是△CED的外角,∠ADC>∠AEC,出現(xiàn)矛盾,故假設(shè)不成立,因此點(diǎn)D在過A、B、C三點(diǎn)的圓上.
因此得到四點(diǎn)共圓的條件:過對(duì)角互補(bǔ)的四邊形的四個(gè)頂點(diǎn)能作一個(gè)圓.
學(xué)習(xí)任務(wù):
(1)材料中劃線部分結(jié)論的依據(jù)是 .
(2)證明過程中主要體現(xiàn)了下列哪種數(shù)學(xué)思想: (填字母代號(hào)即可)
A、函數(shù)思想 B、方程思想 C、數(shù)形結(jié)合思想 D、分類討論思想
(3)如圖(3),在四邊形ABCD中,∠ABC=∠ADC=90°,∠CAD=16°.AD=BD,則求∠ADB的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com