已知:如圖,直線AB與直線BC相交于點(diǎn)B,點(diǎn)D是直線BC上一點(diǎn),求作:點(diǎn)E,使直線DE∥AB,且點(diǎn)E到B、D兩點(diǎn)的距離相等.(尺規(guī)作圖,要求在題目的原圖中完成作圖)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線AC∥DF,C、E分別在AB、DF上,小華想知道∠ACE和∠DEC是否互補(bǔ),但是他有沒有帶量角器,只帶了一副三角板,于是他想了這樣一個辦法:首先連結(jié)CF,再找出CF的中點(diǎn)O,然后連結(jié)EO并延長EO和直線AB相交于點(diǎn)B,經(jīng)過測量,他發(fā)現(xiàn)EO=BO,因此他得出結(jié)論:∠ACE和∠DEC互補(bǔ),而且他還發(fā)現(xiàn)BC=EF。
以下是他的想法,請你填上根據(jù)。小華是這樣想的:
因為CF和BE相交于點(diǎn)O,
根據(jù) 得出∠COB=∠EOF;
而O是CF的中點(diǎn),那么CO=FO,又已知 EO=BO,
根據(jù) 得出△COB≌△FOE,
根據(jù) 得出BC=EF,
根據(jù) 得出∠BCO=∠F,
既然∠BCO=∠F,根據(jù) 出AB∥DF,
既然AB∥DF,根據(jù) 得出∠ACE和∠DEC互補(bǔ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知直線AB及AB外一點(diǎn)C, 過點(diǎn)C作直線EF∥AB (要求:不寫作法,保留作圖痕跡)(5分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點(diǎn)C和D,在直線CD上有一點(diǎn)P.
(1)如果P點(diǎn)在C、D之間運(yùn)動時,問∠PAC,∠APB,∠PBD有怎樣的數(shù)量關(guān)系?請說明理由.(提示:過點(diǎn)P作PE∥l1)
(2)若點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動時(P點(diǎn)與點(diǎn)C、D不重合),試探索∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖①所示,已知,BC∥OA,∠B=∠A=100°,試回答下列問題:
⑴試說明:OB∥AC;
⑵如圖②,若點(diǎn)E、F在BC上,且∠FOC=∠AOC ,OE平分∠BOF.試求∠EOC的度數(shù);
⑶在⑵的條件下,若左右平行移動AC,如圖③,那么∠OCB:∠OFB的比值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個比值;
⑷在⑶的條件下,當(dāng)∠OEB=∠OCA時,試求∠OCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線AB與CD相交于點(diǎn)O,OP是∠BOC的平分線,OE⊥AB,OF⊥CD.
(1)如果∠AOD=40°,
①那么根據(jù) ,可得∠BOC= 度.
②∠POF的度數(shù)是 度.
(2)圖中除直角外,還有相等的角嗎?請寫出三對:
① ;
② ;
③ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com