【題目】已知二次函數(shù)的最大值為4,且該拋物線與軸的交點(diǎn)為,頂點(diǎn)為.
(1)求該二次函數(shù)的解析式及點(diǎn),的坐標(biāo);
(2)點(diǎn)是軸上的動點(diǎn),
①求的最大值及對應(yīng)的點(diǎn)的坐標(biāo);
②設(shè)是軸上的動點(diǎn),若線段與函數(shù)的圖像只有一個(gè)公共點(diǎn),求的取值范圍.
【答案】(1),點(diǎn)坐標(biāo)為,頂點(diǎn)的坐標(biāo)為;(2)①最大值是,的坐標(biāo)為,②的取值范圍為或或.
【解析】
(1)先利用對稱軸公式x=,計(jì)算對稱軸,即頂點(diǎn)坐標(biāo)為(1,4),再將兩點(diǎn)代入列二元一次方程組求出解析式;
(2)根據(jù)三角形的三邊關(guān)系:可知P、C、D三點(diǎn)共線時(shí)|PC-PD|取得最大值,求出直線CD與x軸的交點(diǎn)坐標(biāo),就是此時(shí)點(diǎn)P的坐標(biāo);
(3)先把函數(shù)中的絕對值化去,可知,此函數(shù)是兩個(gè)二次函數(shù)的一部分,分三種情況進(jìn)行計(jì)算:①當(dāng)線段PQ過點(diǎn)(0,3),即點(diǎn)Q與點(diǎn)C重合時(shí),兩圖象有一個(gè)公共點(diǎn),當(dāng)線段PQ過點(diǎn)(3,0),即點(diǎn)P與點(diǎn)(3,0)重合時(shí),兩函數(shù)有兩個(gè)公共點(diǎn),寫出t的取值;②線段PQ與當(dāng)函數(shù)y=a|x|2-2a|x|+c(x≥0)時(shí)有一個(gè)公共點(diǎn)時(shí),求t的值;③當(dāng)線段PQ過點(diǎn)(-3,0),即點(diǎn)P與點(diǎn)(-3,0)重合時(shí),線段PQ與當(dāng)函數(shù)y=a|x|2-2a|x|+c(x<0)時(shí)也有一個(gè)公共點(diǎn),則當(dāng)t≤-3時(shí),都滿足條件;綜合以上結(jié)論,得出t的取值.
解:(1)∵,
∴的對稱軸為.
∵人最大值為4,
∴拋物線過點(diǎn).
得,
解得.
∴該二次函數(shù)的解析式為.
點(diǎn)坐標(biāo)為,頂點(diǎn)的坐標(biāo)為.
(2)①∵,
∴當(dāng)三點(diǎn)在一條直線上時(shí),取得最大值.
連接并延長交軸于點(diǎn),.
∴的最大值是.
易得直線的方程為.
把代入,得.
∴此時(shí)對應(yīng)的點(diǎn)的坐標(biāo)為.
②的解析式可化為
設(shè)線段所在直線的方程為,將,的坐標(biāo)代入,可得線段所在直線的方程為.
(1)當(dāng)線段過點(diǎn),即點(diǎn)與點(diǎn)重合時(shí),線段與函數(shù)的圖像只有一個(gè)公共點(diǎn),此時(shí).
∴當(dāng)時(shí),線段與函數(shù)的圖像只有一個(gè)公共點(diǎn).
(2)當(dāng)線段過點(diǎn),即點(diǎn)與點(diǎn)重合時(shí),線段與函數(shù)的圖像只有一個(gè)公共點(diǎn),此時(shí).
當(dāng)線段過點(diǎn),即點(diǎn)與點(diǎn)重合時(shí),,此時(shí)線段與函數(shù)的圖像有兩個(gè)公共點(diǎn).
所以當(dāng)時(shí),線段與函數(shù)的圖像只有一個(gè)公共點(diǎn).
(3)將帶入,并整理,得.
.
令,解得.
∴當(dāng)時(shí),線段與函數(shù)的圖像只有一個(gè)公共點(diǎn).
綜上所述,的取值范圍為或或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東東玩具商店用500元購進(jìn)一批悠悠球,很受中小學(xué)生歡迎,悠悠球很快售完,接著又用900元購進(jìn)第二批這種悠悠球,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進(jìn)價(jià)多了5元.
(1)求第一批悠悠球每套的進(jìn)價(jià)是多少元;
(2)如果這兩批悠悠球每套售價(jià)相同,且全部售完后總利潤不低于25%,那么每套悠悠球的售價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,M、N是對角線AC上的兩個(gè)動點(diǎn),P是正方形四邊上的任意一點(diǎn),且AB=4,MN=2,設(shè)AM=x,在下列關(guān)于△PMN是等腰三角形和對應(yīng)P點(diǎn)個(gè)數(shù)的說法中,
①當(dāng)x=0(即M、A兩點(diǎn)重合)時(shí),P點(diǎn)有6個(gè);
②當(dāng)P點(diǎn)有8個(gè)時(shí),x=2﹣2;
③當(dāng)△PMN是等邊三角形時(shí),P點(diǎn)有4個(gè);
④當(dāng)0<x<4﹣2時(shí),P點(diǎn)最多有9個(gè).
其中結(jié)論正確的是( )
A. ①② B. ①③ C. ②③ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BA=BC=4,∠A=30°,D是AC上一動點(diǎn),
(Ⅰ)AC的長=_____;
(Ⅱ)BD+DC的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進(jìn)一種品牌
粽子,每盒進(jìn)價(jià)是40元,超市規(guī)定每盒售價(jià)不得少于45元.根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn):當(dāng)售價(jià)定為每盒45元時(shí),每天可賣出700盒,每盒售價(jià)每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價(jià) (元)之間的函數(shù)關(guān)系式;(4分)
(2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷售的利潤 (元)最大?最大利潤是多少?(6分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,函數(shù)()的圖象經(jīng)過點(diǎn)(4,1),直線與圖象交于點(diǎn),與軸交于點(diǎn).
(1)求的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記圖象在點(diǎn),之間的部分與線段,,圍成的區(qū)域(不含邊界)為.
①當(dāng)時(shí),直接寫出區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù);
②若區(qū)域內(nèi)恰有4個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是( 。
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,過點(diǎn)C做直線,P為直線l上一點(diǎn),且,則點(diǎn)P到BC所在直線的距離是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com