【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
【答案】
(1)證明:連接OD,
∵∠ACD=60°,
∴由圓周角定理得:∠AOD=2∠ACD=120°,
∴∠DOP=180°﹣120°=60°,
∵∠APD=30°,
∴∠ODP=180°﹣30°﹣60°=90°,
∴OD⊥DP,
∵OD為半徑,
∴DP是⊙O切線;
(2)解:∵∠P=30°,∠ODP=90°,OD=3cm,
∴OP=6cm,由勾股定理得:DP=3 cm,
∴圖中陰影部分的面積S=S△ODP﹣S扇形DOB= ×3×3 ﹣ =( ﹣ π)cm2
【解析】(1)連接OD,求出∠AOD,求出∠DOB,求出∠ODP,根據(jù)切線判定推出即可;(2)求出OP、DP長,分別求出扇形DOB和三角形ODP面積,即可求出答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC的中點,AC的垂直平分線分別交AC、AD、AB于點E、O、F,則圖中全等的三角形的對數(shù)是______ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AD和過點C的切線互相垂直,垂足為D,直線DC與AB的延長線相交于P.弦CE平分∠ACB,交直徑AB于點F,連結(jié)BE.
(1)求證:AC平分∠DAB;
(2)探究線段PC,PF之間的大小關(guān)系,并加以證明;
(3)若tan∠PCB= ,BE= ,求PF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平臺AB高為12m,在B處測得樓房CD頂部點D的仰角為45°,底部點C的俯角為30°,求樓房CD的高度(結(jié)果保留整數(shù),參考值: ≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC=2,∠A=90°,將一塊與△ABC全等的三角板的直角頂點放在點C上,一直角邊與BC重疊.
(1)操作1:固定△ABC,將三角板沿C→B方向平移,使其直角頂點落在BC的中點M,如圖2所示,探究:三角板沿C→B方向平移的距離為;
(2)操作2:在(1)的情況下,將三角板BC的中點M順時針方向旋轉(zhuǎn)角度a(0°<a<90°),如圖3所示,探究:設(shè)三角形板兩直角邊分別與AB、AC交于點P、Q,觀察四邊形MPAQ形狀的變化,問:四邊形MPAQ的面積S是否改變,若不變,求其面積;若改變,試說明理由;
(3)在(2)的情形下,連PQ,則當△MPQ的面積等于四邊形MPAQ的面積的一半時,四邊形MPAQ的形狀為 , 此時BP= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀以下兩小題后作出相應的解答:
(1)“同位角相等,兩直線平行”,“兩直線平行,同位角相等”,這兩個命題的題設(shè)和結(jié)論在命題中的位置恰好對凋,我們把其中一命題叫做另一個命題的逆命題,請你寫出命題“角平分線上的點到角兩邊的距離相等“的逆命題,并指出逆命題的題設(shè)和結(jié)論;
(2)根據(jù)以下語句作出圖形,并寫出該命題的文字敘述.
已知:過直線AB上一點O任作射線OC,OM、ON分別平分∠AOC、∠BOC,則OM⊥ON.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,BC=a,AC=b,AB=c(b<c<a),BC的垂直平分線DG交∠BAC的角平分線AD于點D,DE⊥AB于E,DF⊥AC于F,則下列結(jié)論一定成立的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一矩形紙片OABC放在平面直角坐標系中,O為原點,點A在x軸上,點C在y軸上,OA=10,OC=8,如圖在OC邊上取一點D,將△BCD沿BD折疊,使點C恰好落在OA邊上,記作E點;
(1)求點E的坐標及折痕DB的長;
(2)在x軸上取兩點M、N(點M在點N的左側(cè)),且MN=4.5,求使四邊形BDMN的周長最短的點M、點N的坐標。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com