【題目】點A、C為半徑是8的圓周上兩動點,點B為的中點,以線段BA、BC為鄰邊作菱形ABCD,頂點D恰在該圓半徑的中點上,則該菱形的邊長為_____.
【答案】或
【解析】
過B作直徑,連接AC交BO于E,如圖①,根據(jù)已知條件得到BD=OB=4,求得OD、OE、DE的長,連接OC,根據(jù)勾股定理得到結(jié)論;如圖②,BD=12,求得OD、OE、DE的長,連接OD,根據(jù)勾股定理得到結(jié)論.
過B作直徑,連接AC交BO于E,
∵點B為的中點,
∴BD⊥AC,
如圖①,
∵點D恰在該圓直徑上,D為OB的中點,
∴BD=×8=4,
∴OD=OB-BD=4,
∵四邊形ABCD是菱形,
∴DE=BD=2,
∴OE=2+4=6,
連接OC,
∵CE=,
在Rt△DEC中,由勾股定理得:DC=;
如圖②,
OD=4,BD=8+4=12,DE=BD=6,OE=6-4=2,
由勾股定理得:CE=,
DC=,
故答案為:或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,E為BC上一點,以CE為直徑作⊙O,AB與⊙O相切于點D,連接CD,若BE=OE=2.
(1)求證:∠A=2∠DCB;
(2)求圖中陰影部分的面積(結(jié)果保留π和根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個進行數(shù)值轉(zhuǎn)換的運行程序如圖所示,從“輸入實數(shù)x”到“結(jié)果是否大于0”稱為“一次操作”(1)判斷:(正確的打“√”,錯誤的打“×”)
①當(dāng)輸入x=3后,程序操作僅進行一次就停止.
②當(dāng)輸入x為負(fù)數(shù)時,無論x取何負(fù)數(shù),輸出的結(jié)果總比輸入數(shù)大.
(2)探究:是否存在正整數(shù)x,使程序能進行兩次操作,并且輸出結(jié)果小于12?若存在,請求出所有符合條件的x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點作OF⊥AB交⊙O于點D,交AC于點E,交BC的延長線于點F,點G是EF的中點,連接CG
(1)判斷CG與⊙O的位置關(guān)系,并說明理由;
(2)求證:2OB2=BCBF;
(3)如圖2,當(dāng)∠DCE=2∠F,CE=3,DG=2.5時,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了弘揚我國古代數(shù)學(xué)發(fā)展的偉大成就,某校九年級進行了一次數(shù)學(xué)知識競賽,并設(shè)立了以我國古代數(shù)學(xué)家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲“祖沖之獎”的學(xué)生成績統(tǒng)計表:
“祖沖之獎”的學(xué)生成績統(tǒng)計表:
分?jǐn)?shù)分 | 80 | 85 | 90 | 95 |
人數(shù)人 | 4 | 2 | 10 | 4 |
根據(jù)圖表中的信息,解答下列問題:
這次獲得“劉徽獎”的人數(shù)是多少,并將條形統(tǒng)計圖補充完整;
獲得“祖沖之獎”的學(xué)生成績的中位數(shù)是多少分,眾數(shù)是多少分;
在這次數(shù)學(xué)知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標(biāo)有數(shù)字“”,“”和“2”,隨機摸出一個小球,把小球上的數(shù)字記為x放回后再隨機摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標(biāo),把y作為縱坐標(biāo),記作點用列表法或樹狀圖法求這個點在第二象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是半圓弧上一動點,連接PA、PB,過圓心O作交PA于點C,連接已知,設(shè)O,C兩點間的距離為xcm,B,C兩點間的距離為ycm.
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行探究.
下面是小東的探究過程,請補充完整:
通過取點、畫圖、測量,得到了x與y的幾組值,如下表:
0 | 1 | 2 | 3 | ||||
3 | 6 |
說明:補全表格時相關(guān)數(shù)據(jù)保留一位小數(shù)
建立直角坐標(biāo)系,描出以補全后的表中各對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;
結(jié)合畫出的函數(shù)圖象,解決問題:直接寫出周長C的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD中,E為對角線BD邊上一點.
當(dāng)時,把線段CE繞C點順時針旋轉(zhuǎn)得CF,連接DF.
求證:;
連FE成直線交CD于點M,交AB于點N,求證:;
當(dāng),E為BD中點時,如圖2,P為BC下方一點,,,,求PC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com