【題目】已知直線l1:y=x+n﹣2與直線l2:y=mx+n相交于點(diǎn)P(1,2).
(1)求m,n的值;
(2)請(qǐng)結(jié)合圖象直接寫(xiě)出不等式mx+n>x+n﹣2的解集.
(3)若直線l1與y軸交于點(diǎn)A,直線l2與x軸交于點(diǎn)B,求四邊形PAOB的面積.
【答案】(1)m=﹣1,n=3;(2)x<1;(3)四邊形PAOB的面積為:3.5.
【解析】
(1)直接把已知點(diǎn)代入函數(shù)關(guān)系式進(jìn)而得出m,n的值;
(2)直接利用函數(shù)圖形得出不等式mx+n>x+n﹣2的解集;
(3)分別得出AO,BO的長(zhǎng),進(jìn)而得出四邊形PAOB的面積.
(1)把P(1,2)代入y=x+n﹣2得:
1+n﹣2=2,
解得:n=3;
把P(1,2)代入y=mx+3得:
m+3=2,
解得m=﹣1;
(2)不等式mx+n>x+n﹣2的解集為:x<1;
(3)當(dāng)x=0時(shí),y=x+1=1,
故OA=1,
當(dāng)y=0時(shí),y=﹣x+3,
解得:x=3,
則OB=3,
四邊形PAOB的面積為:(1+2)×1+×2×(3﹣1)=3.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖1,點(diǎn)把線段分割成,若以為邊的三角形是一個(gè)直角三角形,則稱是線段的勾股點(diǎn)。
(1)已知點(diǎn)是線段的勾股點(diǎn),若,求的長(zhǎng)。
(圖1) (圖2) (圖3)
(2)如圖2,點(diǎn)是反比例函數(shù)上的動(dòng)點(diǎn),直線與坐標(biāo)軸分別交與兩點(diǎn),過(guò)點(diǎn)分別向軸作垂線,垂足為,且交線段于。試證明:是線段的勾股點(diǎn)。
(3)如圖3,已知一次函數(shù)與坐標(biāo)軸交與兩點(diǎn),與二次函數(shù)交與兩點(diǎn),若是線段的勾股點(diǎn),求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)與的圖象交于.
(1)求出m、n的值;
(2)直接寫(xiě)出不等式的解集;
(3)求出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某演唱會(huì)購(gòu)買門(mén)票的方式有兩種.
方式一:若單位贊助廣告費(fèi)10萬(wàn)元,則該單位所購(gòu)門(mén)票的價(jià)格為每張0.02萬(wàn)元;
方式二:如圖所示.
設(shè)購(gòu)買門(mén)票x張,總費(fèi)用為y萬(wàn)元,方式一中:總費(fèi)用=廣告贊助費(fèi)+門(mén)票費(fèi).
(1)求方式一中y與x的函數(shù)關(guān)系式.
(2)若甲、乙兩個(gè)單位分別采用方式一、方式二購(gòu)買本場(chǎng)演唱會(huì)門(mén)票共400張,且乙單位購(gòu)買超過(guò)100張,兩單位共花費(fèi)27.2萬(wàn)元,求甲、乙兩單位各購(gòu)買門(mén)票多少?gòu)垼?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校決定從甲、乙兩名同學(xué)中選拔一人參加“誦讀經(jīng)典”大賽,在相同的測(cè)試條件下,甲、乙兩人5次測(cè)試成績(jī)(單位:分)如下:
甲:79,86,82,85,83.
乙:88,81,85,81,80.
請(qǐng)回答下列問(wèn)題:
(1)甲成績(jī)的中位數(shù)是______,乙成績(jī)的眾數(shù)是______;
(2)經(jīng)計(jì)算知,.請(qǐng)你求出甲的方差,并從平均數(shù)和方差的角度推薦參加比賽的合適人選.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,關(guān)于x的一元二次方程x2+(1﹣k)x﹣k=0 (其中k為常數(shù)).
(1)判斷方程根的情況并說(shuō)明理由;
(2)若﹣1<k<0,設(shè)方程的兩根分別為m,n(m<n),求它的兩個(gè)根m和n;
(3)在(2)的條件下,若直線y=kx﹣1與x軸交于點(diǎn)C,x軸上另兩點(diǎn)A(m,0)、點(diǎn)B(n,0),試說(shuō)明是否存在k的值,使這三點(diǎn)中相鄰兩點(diǎn)之間的距離相等?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我縣某公司參加社會(huì)公益活動(dòng),準(zhǔn)備購(gòu)進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤(rùn)捐助給慈善機(jī)構(gòu).根據(jù)市場(chǎng)調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量 (單位:個(gè))與銷售單價(jià) (單位:元/個(gè))之間的關(guān)系式為.
(1) 若許愿瓶的進(jìn)價(jià)為6元/個(gè),按照上述市場(chǎng)調(diào)查的銷售規(guī)律,求銷售利潤(rùn) (單位:元)與銷售單價(jià) (單位:元/個(gè))之間的函數(shù)關(guān)系式;
(2) 在(1)問(wèn)的條件下,若許愿瓶的進(jìn)貨成本不超過(guò)900元,要想獲得最大利潤(rùn),試確定這種許愿瓶的銷售單價(jià),并求出此時(shí)的最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)綠色出行號(hào)召,越來(lái)越多市民選擇租用共享單車出行,已知某共享單車公司為市民提供了手機(jī)支付和會(huì)員卡支付兩種支付方式,如圖描述了兩種方式應(yīng)支付金額y(元)與騎行時(shí)間x(時(shí))之間的函數(shù)關(guān)系,根據(jù)圖象回答下列問(wèn)題:
(1)求手機(jī)支付金額y(元)與騎行時(shí)間x(時(shí))的函數(shù)關(guān)系式;
(2)李老師經(jīng)常騎行共享單車,請(qǐng)根據(jù)不同的騎行時(shí)間幫他確定選擇哪種支付方式比較合算.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com