精英家教網 > 初中數學 > 題目詳情

【題目】徐州地鐵1號線,西起杏山子大道,止于高鐵徐州東站,共設18座站點,18座站點如下所示.徐州軌道交通試運營期間,小蘇從蘇堤路站開始乘坐地鐵,在地鐵各站點做志愿者服務,到站下車時,本次志愿者服務活動結束,約定向徐州東站站方向(即箭頭方向)為正,當天的乘車記錄如下(單位:站):,-2,-6,8,3,-4-9,8.

1)請通過計算說明站是哪一站?

2)如果相鄰兩站之間的距離為千米,求這次小蘇志愿服務期間乘坐地鐵行進的總路程是多少千米?

【答案】1A站是民主北路站;(2112.5

【解析】

1)根據有理數的加法,可得答案;

2)根據絕對值的意義和有理數的加法可得一共的站數,再乘以2.5可得答案.

1+526+8+349+8=3

答:A站是民主北路站;

2)(5+2+6+8+3+4+9+8)×2.5=45×2.5=112.5(千米).

答:這次小蘇志愿服務期間乘坐地鐵行進的路程是112.5千米.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:點DE分別是△ABCBC,AC邊的中點.

(1)如圖①,若AB=10,求DE的長;

(2)如圖②,FAB邊上的一點,FG//AD,ED的延長線于點G.求證:AF=DG

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,觀察由棱長為 的小立方體擺成的圖形,尋找規(guī)律:如圖 ① 中,共有 個小立方體,其中 個看得見, 個看不見;如圖 ② 中,共有 個小立方體,其中 個看得見, 個看不見;如圖 ③ 中,共有 個小立方體,其中 個看得見, 個看不見; ,則第 ⑥個圖中,看得見的小立方體有________________個.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,杭州某化工廠與A,B兩地有公路,鐵路相連.這家工廠從A地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產品運到B地.已知公路運價為1.4/(噸千米),鐵路運價為1.1/(噸千米),且這兩次運輸共支出公路運輸費14000元,鐵路運輸費89100元,求:

1)該工廠從A地購買了多少噸原料?制成運往B地的產品多少噸?

2)這批產品的銷售款比原料費與運輸費的和多多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】觀察下列兩個等式:2=2×+1,5=5×+1,給出定義如下:我們稱使等式abab1的成立的一對有理數a,b共生有理數對,記為(a,b),如:數對(2,),(5,),都是共生有理數對

(1)判斷數對(2,1),(3,)是不是共生有理數對,寫出過程;

(2)(a,3)共生有理數對,求a的值;

(3)(m,n)共生有理數對”,(n,m)“共生有理數對”(不是”);說明理由;

(4)請再寫出一對符合條件的共生有理數對(注意:不能與題目中已有的共生有理數對重復).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,點E在⊙O上,∠EAB的平分線交⊙O于點C,過點C作AE的垂線,垂足為D,直線DC與AB的延長線交于點P.

(1)判斷直線PC與⊙O的位置關系,并說明理由;

(2)若tan∠P=,AD=6,求線段AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是長方形,尺寸如圖所示:

求陰影部分的面積;

,求陰影部分的面積;

,那么有怎樣的關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,OABC的一個頂點與坐標原點重合,OA邊落在x軸上,且OA=4OC=2,COA=45°.反比例函數y=k0,x0)的圖象經過點C,與AB交于點D,連接AC,CD

1)試求反比例函數的解析式;

2)求證:CD平分∠ACB;

3)如圖2,連接OD,在反比例的函數圖象上是否存在一點P,使得SPOC=SCOD?如果存在,請直接寫出點P的坐標.如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下表給出了16名學生的身高情況與全班平均身高的差值(單位:厘米)

學生

A

B

C

D

E

F

身高

157

162

159

152

163

164

身高與全班平均身高的差值

-3

+2

-1

a

+3

b

1)列式計算表中數據ab

2)這6名學生的平均身高與全班學生的平均身高相比,在數值上有什么關系?(通過計算回答)

查看答案和解析>>

同步練習冊答案