【題目】如圖1在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),已知拋物線y=a(x+1)(x﹣3)與x軸相交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸正半軸交于點(diǎn)C,且∠ABC=45°.
(1)求a的值;
(2)如圖2,點(diǎn)D在線段BC上(不與C重合),當(dāng)AD=AC時(shí),求D點(diǎn)坐標(biāo);
(3)如圖3,在(2)的條件下,E為拋物線上一點(diǎn),且在第一象限,過(guò)E作EF∥AD與AC相交于點(diǎn)F,當(dāng)EF被BC平分時(shí),求點(diǎn)E坐標(biāo).
【答案】
(1)
解:拋物線y=a(x+1)(x﹣3),
令y=0,則有a(x+1)(x﹣3)=0,
解得:x=﹣1,或x=3,
∴A(﹣1,0),B(3,0),
∵∠ABC=45°,∠BOC=90°,
∴OB=OC=3,
∴C(0,3),
將點(diǎn)C(0,3)代入二次函數(shù)解析式得:
3=a×(0+1)×(0﹣3),
解得:a=﹣1
(2)
解:∵點(diǎn)A(﹣1,0),點(diǎn)C(0,3),點(diǎn)B(3,0),
∴AC= ,
又∵∠ABC=45°,
∴直線BC的解析式為y=﹣x+3,
設(shè)點(diǎn)D的坐標(biāo)為(m,﹣m+3),
由兩點(diǎn)間的距離公式可知:AD= ,
∵AD=AC= ,
∴有 = ,
解得:m=0(舍去),m=2,
此時(shí)﹣m+3=﹣2+3=1.
故當(dāng)AD=AC時(shí),D點(diǎn)坐標(biāo)為(2,1)
(3)
解:設(shè)直線AD的解析式為y=kx+b,
將A(﹣1,0),D(2,1)代入,得
,解得 .
∴直線AD的解析式為y= x+ .
∵EF∥AD,
∴設(shè)直線EF的解析式為y= x+c.
令﹣x+3= x+c,則有x= (3﹣c).
將y= x+c代入y=﹣1(x+1)(x﹣3)中,得
﹣(3﹣c)=0,
由根與系數(shù)的關(guān)系可知:x1+x2=﹣ = .
∵EF被BC平分,
∴EF與BC的交點(diǎn)的橫坐標(biāo)為 ,
即 (3﹣c)×2= ,解得:c= .
解方程 ﹣(3﹣ )=0,得:x1= ,x2= .
∵點(diǎn)E在第一象限,
∴點(diǎn)E的橫坐標(biāo)為 .
將x= 代入y= x+ 中得,y= .
∴點(diǎn)E的坐標(biāo)為( , )
【解析】(1)通過(guò)拋物線解析式求出點(diǎn)AB坐標(biāo),利用等腰直角三角形性質(zhì)求出C點(diǎn)坐標(biāo),代入拋物線即可求出a值;(2)由B、C點(diǎn)坐標(biāo)可得出直線BC的解析式,設(shè)出D點(diǎn)坐標(biāo)(m,﹣m+3),由兩點(diǎn)間的距離公式可表示出AD的長(zhǎng)度,再由AC=AD找出關(guān)于m的一元二次方程,解方程求出m的值,代入到D點(diǎn)坐標(biāo)中即可得出結(jié)論.(3)由A、D點(diǎn)坐標(biāo)可得出直線AD的解析式,由EF平行AD設(shè)出直線EF的解析式,代入到拋物線中可得到關(guān)于x的一元二次方程,根據(jù)根與系數(shù)的關(guān)系表示出兩根之和,再由直線EF和BC的解析式可找出交點(diǎn)的坐標(biāo),根據(jù)EF被BC平分,可知交點(diǎn)的橫坐標(biāo)的2倍為前面一元二次方程的兩根之和,解方程即可得出直線EF的解析式,從而得出點(diǎn)E的坐標(biāo).
【考點(diǎn)精析】通過(guò)靈活運(yùn)用拋物線與坐標(biāo)軸的交點(diǎn),掌握一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如表記錄了一名球員在罰球線上投籃的結(jié)果.那么,這名球員投籃一次,投中的概率約為(精確到0.1).
投籃次數(shù)(n) | 50 | 100 | 150 | 200 | 250 | 300 | 500 |
投中次數(shù)(m) | 28 | 60 | 78 | 104 | 123 | 152 | 251 |
投中頻率(m/n) | 0.56 | 0.60 | 0.52 | 0.52 | 0.49 | 0.51 | 0.50 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰Rt△,如此繼續(xù)下去,直到所畫(huà)直角三角形的斜邊與△ABC的BC邊在同一直線上時(shí)為止,此時(shí),這個(gè)直角三角形的斜邊長(zhǎng)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△COD是△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)40°后得到的圖形,若點(diǎn)C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是( )
A.40°
B.50°
C.60°
D.70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AD=18,點(diǎn)E在AC上且CE= AC,連接BE,與AD相交于點(diǎn)F.若BE=15,則△DBF的周長(zhǎng)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABD中,AB=AD,以AB為直徑的⊙F交BD于點(diǎn)C,交AD與點(diǎn)E,CG⊥AD于點(diǎn)G.
(1)求證:GC是⊙F的切線;
(2)填空:①若△BCF的面積為15,則△BDA的面積為
②當(dāng)∠GCD的度數(shù)為時(shí),四邊形EFCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=8,點(diǎn)E,F(xiàn)分別在AB,AD上,且AE=AF,過(guò)點(diǎn)E作EG∥AD交CD于點(diǎn)G,過(guò)點(diǎn)F作FH∥AB交BC于點(diǎn)H,EG與FH交于點(diǎn)O.當(dāng)四邊形AEOF與四邊形CGOH的周長(zhǎng)之差為12時(shí),AE的值為( )
A.6.5
B.6
C.5.5
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y= x+2 與x軸,y軸分別交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),將△OMN沿直線MN翻折后得到△PMN,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,BC=3,AB=4,D是邊AB上一點(diǎn),DE∥BC交AC于點(diǎn)E,將△ADE沿DE翻折得到△A′DE,若△A′EC是直角三角形,則AD長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com