【題目】如圖,四邊形ABCD的對角線AC,BD相交于點O,且ABCD,添加下列條件后仍不能判斷四邊形ABCD是平行四邊形的是( 。

A.ABCDB.ADBCC.OAOCD.ADBC

【答案】D

【解析】

根據(jù)平行四邊形的判定定理逐個判斷即可;

1、兩組 對邊分別平行的四邊形是平行四邊形;

2、兩組對邊分別相等的四邊形是平行四邊形;

3、對角線互相平分的四邊形是平行四邊形;

4、一組對邊平行且相等的四邊形是平行四邊形;5、兩組對角分別相等 的四邊形是平行四邊形.

A、由一組對邊平行且相等的四邊形是平行四邊形可得出四邊形ABCD是平行四邊形;

B、由兩組對邊分別平行的四邊形是平行四邊形可得出四邊形ABCD是平行四邊形;

C、由ABCD可得出∠BAO=∠DCO、∠ABO=∠CDO,結(jié)合OAOC可證出ABO≌△CDOAAS),根據(jù)全等三角形的性質(zhì)可得出ABCD,由一組對邊平行且相等的四邊形是平行四邊形可得出四邊形ABCD是平行四邊形;

D、由ABCDADBC無法證出四邊形ABCD是平行四邊形.

故選D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小何按市場價格/千克在收購了千克蘑菇存放入冷庫中,請根據(jù)小何提供的預(yù)測信息(如圖)幫小何解決以下問題:

)若小何想將這批蘑菇存放天后一次性出售,則天后這批蘑菇的銷售單價為__________元,這批蘑菇的銷售量是__________千克.

)小何將這批蘑菇存放多少天后,一次性出售所得的銷售總金額為元?

)將這批蘑菇存放多少天后一次性出售可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某“欣欣”奶茶店開業(yè)大酬賓推出四款飲料.千克飲料的原料是千克蘋果,千克梨,千克西瓜;1千克飲料的原料是千克蘋果,千克梨,千克西瓜;千克飲料的原料是千克蘋果,千克梨, 千克西瓜;千克飲料的原料是千克蘋果,千克梨,千克西瓜;如果每千克蘋果的成本價為元,每千克梨的成本價為元,每千克西瓜的成本價為元.開業(yè)當天全部售罄,銷售后,共計蘋果的總成本為元,并且梨的總成本為元,那么西瓜的總成本為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是線段上任意一點(端點除外),分別以為邊,并且在的同一側(cè)作等邊和等邊,連結(jié),連結(jié),給出以下三個結(jié)論:

,其中結(jié)論正確的個數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點.

(1)求出拋物線的解析式;

(2)在坐標軸上是否存在點D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點D的坐標;若不存在,說明理由;

(3)點P是線段AB上一動點,(點P不與點AB重合),過點PPMOA,交第一象限內(nèi)的拋物線于點M,過點MMCx軸于點C,交AB于點N,若△BCN、△PMN的面積SBCN、SPMN滿足SBCN=2SPMN,求出的值,并求出此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)在“蜀南竹!笔召徝,直接銷售,每噸可獲利100元,進行粗加工,每天可加工8噸,每噸可獲利800元;如果對毛竹進行精加工,每天可加工1噸,每噸可獲利4000元.由于受條件限制,每天只能采用一種方式加工,要求將在一月內(nèi)(30天)將這批毛竹93噸全部銷售.為此企業(yè)廠長召集職工開會,讓職工討論如何加工銷售更合算.

甲說:將毛竹全部進行粗加工后銷售;

乙說:30天都進行精加工,未加工的毛竹直接銷售;

丙說:30天中可用幾天粗加工,再用幾天精加工后銷售;

請問廠長應(yīng)采用哪位說的方案做,獲利最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在數(shù)軸上A點表示數(shù),B點表示數(shù),、滿足||+||=0;

(1)點A表示的數(shù)為_____;點B表示的數(shù)為_____;

(2)若在原點O處放一擋板,一小球甲從點A處以1個單位/秒的速度向左運動;同時另一小球乙從點B處以2個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設(shè)運動的時間為t(秒),

①當t=1時,甲小球到原點的距離=_____;乙小球到原點的距離=_____.

t=3時,甲小球到原點的距離=_____;乙小球到原點的距離=_____.

②試探究:甲,乙兩小球到原點的距離可能相等嗎?若不能,請說明理由.若能,請直接寫出甲,乙兩小球到原點的距離相等時經(jīng)歷的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知兩條射線OMCN,動線段AB的兩個端點AB分別在射線OM、CN上,且∠C =OAB =108°,F點在線段CB上,OB平分∠AOF,OE平分∠COF.

(1)請在圖中找出與∠AOC相等的角,并說明理由;

(2)若平移AB,那么∠OBC與∠OFC的度數(shù)比是否隨著AB位置變化而變化?若變化,找出變化規(guī)律;若不變,求出這個比值.

查看答案和解析>>

同步練習冊答案