【題目】已知拋物線y=mx2-(m+5)x+5.
(1)求證:它的圖象與x軸必有交點(diǎn),且過x軸上一定點(diǎn);
(2)這條拋物線與x軸交于兩點(diǎn)A(x1,0),B(x2,0),且0<x1<x2,過(1) 中定點(diǎn)的直線L;y=x+k交y軸于點(diǎn)D,且AB=4,圓心在直線L上的⊙M為A、B兩點(diǎn),求拋物線和直線的關(guān)系式,弦AB與弧圍成的弓形面積.
【答案】(1)證明見解析;(2)
【解析】本題主要考查了二次函數(shù)與一元二次方程的聯(lián)系、根的判別式、函數(shù)圖象與坐標(biāo)軸交點(diǎn)坐標(biāo)的求法、函數(shù)解析式的確定、扇形面積的計(jì)算方法等
(1)若拋物線于x軸有交點(diǎn),那么當(dāng)y=0時(shí),所得方程的根的判別式恒大于等于0,可據(jù)此進(jìn)行證明;將拋物線解析式的右邊,用十字相乘法進(jìn)行因式分解,可得:y=(mx-5)(x-1),由此可看出拋物線一定經(jīng)過點(diǎn)(1,0).
(2)由于拋物線交x軸于A、B兩點(diǎn),且A在B左側(cè),且A、B都在原點(diǎn)的右側(cè),因此A(1,0),B(5,0),根據(jù)A點(diǎn)坐標(biāo),可確定直線的解析式,根據(jù)A、B的坐標(biāo),可確定拋物線的解析式;
若⊙M同時(shí)經(jīng)過A、B兩點(diǎn),根據(jù)拋物線和圓的對稱性知:點(diǎn)M必為拋物線對稱軸與直線的交點(diǎn),由此可求得點(diǎn)M的坐標(biāo)為(3,2),而AB=4,因此△ABM是個(gè)等腰直角三角形,即可得到的圓心角,那么扇形MAB的面積減去等腰直角三角形MAB的面積即為所求弓形的面積.
(1)證明:∵y=mx2-(m+5)x+5,∴△=[-(m+5)]2-4m×5=m2+10m+25-20m="(m-" 5)2.
不論m取任何實(shí)數(shù),(m-5)2≥0,即△≥0,故拋物線與x軸必有交點(diǎn).
又∵x軸上點(diǎn)的縱坐標(biāo)均為零,∴令y=0,代入y=mx2-(m+5)x+5,得
mx2-(m+5)x+ 5=0,(mx-5)(x-1)=0,
∴x=或x=1.故拋物線必過x軸上定點(diǎn)(1,0).
(2)解:如答圖所示,
∵L:y=x+k,把(1,0)代入上式,
得0=1+k,∴k=-1,∴y="x-1."
又∵拋物線與x軸交于兩點(diǎn)A(x1,0),B(x2,0),且0<x1<x2,AB=4,
∵x1x2>0,∴x1="1," x2=5,∴A(1,0),B(5,0),
把B(5,0)代入y=mx2-(m+5)x+5,得0=25m-(m+5)×5+5.
∴m=1,∴y=x2-6x+5.
∵M(jìn)點(diǎn)既在直線L:y=x-1上,又在線段AB的垂直平分線上,
∴M點(diǎn)的橫坐標(biāo)x1+=1+.
把x=3代入y=x-1,得y=2.
∴圓心M(3,2),∴半徑r=MA=MB=,
∴MA2=MB2=8.
又AB2=42= 16,∴MA2+MB2=AB2,
∴△ABM為直角三角形,且∠AMB=90°,
∴S弓形ACB=S扇形AMB- S△ABM=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+4與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知A點(diǎn)的坐標(biāo)為A(﹣2,0).
(1)求拋物線的解析式及它的對稱軸;
(2)求點(diǎn)C的坐標(biāo),連接AC、BC并求線段BC所在直線的解析式;
(3)在拋物線的對稱軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面給出四邊形ABCD中,∠A、∠B、∠C、∠D的度數(shù)之比,其中能判定四邊形ABCD為平行四邊形的是( )
A. 1∶2∶3∶4 B. 2∶3∶2∶3
C. 2∶2∶3∶3 D. 1∶2∶2∶3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,3)。雙曲線的圖像經(jīng)過BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE。
(1)求k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是邊上一點(diǎn),且△FBC∽△DEB,求直線FB的解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算中,正確的是
A. (x4)3=xl2B. a2·a5=al0C. (3a)2=6a2D. a6÷a2=a3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD的邊AB=3,AD=2,將此矩形置入直角坐標(biāo)系中,使AB在x 軸上,點(diǎn)C 在直線y=x-2上.
(1)求矩形各頂點(diǎn)坐標(biāo);
(2)若直線y=x-2與y軸交于點(diǎn)E,拋物線過E、A、B三點(diǎn),求拋物線的關(guān)系式;
(3)判斷上述拋物線的頂點(diǎn)是否落在矩形ABCD內(nèi)部,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2-x-(m+1)=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若m為符合條件的最小整數(shù),求此方程的根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com