(2006•哈爾濱)已知:如圖,圓O1與圓O2外切于點P,經(jīng)過圓O1上一點A作圓O1的切線交圓O2于B、C兩點,直線AP交圓O2于點D,連接DC、PC.
(1)求證:DC2=DP•DA;
(2)若圓O1與圓O2的半徑之比為1:2,連接BD,BD=4,PD=12,求AB的長.

【答案】分析:(1)相切兩圓常作的輔助線是:兩圓的公切線,因此過點P作兩圓的內(nèi)公切線EP交AB于點F,然后證得△CDP∽△ADC,可證DC2=DP•DA;
(2)求AB的長時,由(1)知△CDP∽△ADC,可得.還可得出DP=2PA,DC=BD.再根據(jù)切割線定理得:AP•AD=AB•AC,由此可求出AB的長.
解答:(1)證明:過點P作兩圓的內(nèi)公切線EP交AB于點F,
∵FE、CA都與圓O1相切,
∴FP=FA,
∴∠FAP=∠FPA;
∵∠FPA=∠EPD=∠DCP,
∴∠FAP=∠DCP;
∵∠PDC=∠CDA,
∴△CDP∽△ADC;
;
∴DC2=DP•DA.

(2)解:連接O1O2,則點P在O1O2上,連接O1A、O2D,
∵O1A=O1P,
∴∠O1AP=∠O1PA;
又∵O2P=O2D,
∴∠O2DP=∠O2PD,
∴∠O1AP=∠O2DP;
∴O1A∥O2D,
=;
∴DP=2PA,
∵DP=12
∴PA=6,
由(1)中△CDP∽△ADC,得∠DCB=∠APC,;
∵∠APC=∠DBC,
∴∠DCB=∠DBC;
∴DC=BD=4;
∵DP=12,AP=4,
∴AD=AP+DP=16;
,
∴AC=48
由AP•AD=AB•AC,得4×12=48AB,
∴AB=
點評:此題綜合性強,將圓的有關(guān)知識與三角形相似結(jié)合考查,有一定難度;命題立意:此題主要考查相切兩圓的位置關(guān)系及切線長定理,三角形相似的判定等知識.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•哈爾濱)已知:二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中點A的坐標是(-1,0),與y軸負半軸交于點C,其對稱軸是直線x=,tan∠BAC=2.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)作圓O’,使它經(jīng)過點A、B、C,點E是AC延長線上一點,∠BCE的平分線CD交圓O’于點D,連接AD、BD,求△ACD的面積;
(3)在(2)的條件下,二次函數(shù)y=ax2+bx+c的圖象上是否存在點P,使得∠PDB=∠CAD?如果存在,請求出所有符合條件的P點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:解答題

(2006•哈爾濱)已知:二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中點A的坐標是(-1,0),與y軸負半軸交于點C,其對稱軸是直線x=,tan∠BAC=2.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)作圓O’,使它經(jīng)過點A、B、C,點E是AC延長線上一點,∠BCE的平分線CD交圓O’于點D,連接AD、BD,求△ACD的面積;
(3)在(2)的條件下,二次函數(shù)y=ax2+bx+c的圖象上是否存在點P,使得∠PDB=∠CAD?如果存在,請求出所有符合條件的P點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:填空題

(2006•哈爾濱)已知點O在直線AB上,且線段OA的長度為4cm,線段OB的長度為6cm,E、F分別為線段OA、OB的中點,則線段EF的長度為    cm.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:填空題

(2006•哈爾濱)觀察下列圖形:它們是按一定規(guī)律排列的,依照此規(guī)律,第8個圖形共有    枚五角星.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:選擇題

(2006•哈爾濱)已知圓O1與圓O2半徑的長是方程x2-7x+12=0的兩根,且O1O2=,則圓O1與圓O2的位置關(guān)系是( )
A.相交
B.內(nèi)切
C.內(nèi)含
D.外切

查看答案和解析>>

同步練習冊答案