【題目】如圖1,已知直線PQ∥MN,點A在直線PQ上,點C、D在直線MN上,連接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE與CE相交于點E.
(1)若將圖1中的線段AD沿MN向右平移到A1D1如圖2所示位置,此時A1E平分∠AA1D1,CE平分∠ACD1,A1E與CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度數(shù).
(2)若將圖1中的線段AD沿MN向左平移到A1D1如圖3所示位置,其他條件與(1)相同,求此時∠A1EC的度數(shù).
【答案】(1)130°;(2)40°.
【解析】
(1)直接利用角平分線的性質(zhì)結(jié)合平行線的性質(zhì)得出∠CAE以及∠ECA的度數(shù),進而得出答案;
(2)直接利用角平分線的性質(zhì)結(jié)合平行線的性質(zhì)得出∠1和∠2的度數(shù),進而得出答案.
解:(1)如圖所示:
∵∠A1D1C=30°,線段AD沿MN向右平移到A1D1,PQ∥MN,
∴∠QA1D1=30°,
∴∠PA1D1=150°,
∵A1E平分∠AA1D1,
∴∠PA1E=∠EA1D1=75°,
∵∠PAC=50°,PQ∥MN,
∴∠CAQ=130°,∠ACN=50°,
∵CE平分∠ACD1,
∴∠ACE=25°,
∴∠A1EC =360°-25°-130°-75°=130°;
(2)如圖所示:
過點E作FE∥PQ,
∵∠A1D1C=30°,線段AD沿MN向左平移到A1D1,PQ∥MN,
∴∠QA1D1=30°,
∵A1E平分∠AA1D1,
∴∠QA1E=∠2=15°,
∵∠PAC=50°,PQ∥MN,
∴∠ACN=50°,
∵CE平分∠ACD1,
∴∠ACE=∠ECN=∠1=25°,
∴∠A1EC =∠1+∠2=15°+25°=40°.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如圖1,若點D關(guān)于直線AE的對稱點為F,求證:△ADF∽△ABC;
(2)如圖2,在(1)的條件下,若α=45°,求證:DE2=BD2+CE2;
(3)如圖3,若α=45°,點E在BC的延長線上,則等式DE2=BD2+CE2還能成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】知識是用來為人類服務(wù)的,我們應該把它們用于有意義的方面.下面就兩個情景請你作出評判.
情景一:從教室到圖書館,總有少數(shù)同學不走人行道而橫穿草坪,這是為什么呢?試用所學數(shù)學知識來說明這個問題.
情景二:A、B是河流l兩旁的兩個村莊,現(xiàn)要在河邊修一個抽水站向兩村供水,問抽水站修在什么地方才能使所需的管道最短?請在圖中表示出抽水站點P的位置,并說明你的理由:
你贊同以上哪種做法?你認為應用數(shù)學知識為人類服務(wù)時應注意什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中
(1)求作:△ABC的內(nèi)切圓⊙O(要求尺規(guī)作圖,保留作圖痕跡,不必寫作法)
(2)綜合應用:在你所作的圓中,若∠AOB=140°,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠為了擴大生產(chǎn),決定購買6臺機器用于生產(chǎn)零件,現(xiàn)有甲、乙兩種機器可供選擇,其中甲型機器每日生產(chǎn)零件106個,乙型機器每日生產(chǎn)零件60個,經(jīng)調(diào)查,購買3臺甲型機器和2臺乙機器共需31萬元,購買一臺甲型機器比購買一臺乙型機器多2萬元.
(1)求甲、乙兩種機器每臺各多少萬元?
(2)如果工廠購買機器的預算資金不超過34萬元,那么該工廠有幾種購買方案?
(3)在(2)的條件下,如果該工廠購進的6臺機器的日產(chǎn)量能力不能低于380個,那么為了節(jié)約資金,應選擇那種方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市中小學全面開展“陽光體育”活動,某校在大課間中開設(shè)了A(體操)、B(乒乓球)、C(毽球)、D(跳繩)四項活動.為了解學生最喜歡哪一項活動,隨機抽了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)這次被調(diào)查的學生共有 人;
(2)請將統(tǒng)計圖2補充完整;
(3)統(tǒng)計圖1中B項目對應的扇形的圓心角是 度;
(4)已知該校共有學生2500人,根據(jù)調(diào)查結(jié)果估計該校喜歡體操的學生有 人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=2x與反比例函數(shù)y= (k≠0,x>0)的圖象交于點A(1,a),點B是此反比例函數(shù)圖象上任意一點(不與點A重合),BC⊥x軸于點C.
(1)求k的值;
(2)求△OBC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為.
(1)求口袋中黃球的個數(shù);
(2)甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,
求兩次摸 出都是紅球的概率;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù),完成下列各題:
(1)將函數(shù)關(guān)系式用配方法化為 y=a(x+h)2+k形式,并寫出它的頂點坐標、對稱軸.
(2)若它的圖象與x軸交于A、B兩點,頂點為C,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com