【題目】如圖所示,將矩形ABCD的四個角向內(nèi)折起,恰好拼成一個既無縫隙又無重疊的四邊形EFGH,若EH=3,EF=4,那么線段AD與AB的比等于( 。
A. 25:24 B. 16:15 C. 5:4 D. 4:3
【答案】A
【解析】
先根據(jù)圖形翻折的性質(zhì)可得到四邊形EFGH是矩形,再根據(jù)全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面積公式即可解答.
∵∠1=∠2,∠3=∠4,
∴∠2+∠3=90°,
∴∠HEF=90°,
同理四邊形EFGH的其它內(nèi)角都是90°,
∴四邊形EFGH是矩形,
∴EH=FG(矩形的對邊相等),
又∵∠1+∠4=90°,∠4+∠5=90°,
∴∠1=∠5(等量代換),
同理∠5=∠7=∠8,
∴∠1=∠8,
∴Rt△AHE≌Rt△CFG,
∴AH=CF=FN,
又∵HD=HN,
∴AD=HF,
在Rt△HEF中,EH=3,EF=4,根據(jù)勾股定理得HF==5,
又∵HEEF=HFEM,
∴EM=,
又∵AE=EM=EB(折疊后A、B都落在M點(diǎn)上),
∴AB=2EM=,
∴AD:AB=5:==25:24.
故選:A
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長方形紙片放入平面直角坐標(biāo)系中,使分別落在軸的的正半軸上,連接,且,.
(1)求點(diǎn)的坐標(biāo);
(2)將紙片折疊,使點(diǎn)與點(diǎn)重合(折痕為),求折疊后紙片重疊部分的面積;
(3)求所在直線的函數(shù)表達(dá)式,并求出對角線與折痕交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,E是AB邊的中點(diǎn),DE交AC于點(diǎn)F,AC、DE把它分成的四部分的面積分別為S1S2S3S4,下面結(jié)論:
①只有一對相似三角形
②EF:ED=1:2
③S1:S2:S3:S4=1:2:4:5
其中正確的結(jié)論是( 。
A.①③ B.③ C.① D.①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車道上確定點(diǎn)D,使CD與垂直,測得CD的長等于21米,在上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=300,∠CBD=600.
(1)求AB的長(精確到0.1米,參考數(shù)據(jù):);
(2)已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊿中,,點(diǎn)分別在 邊上,且, .
⑴.求證:⊿是等腰三角形;
⑵.當(dāng) 時,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十字相乘法”能把二次三項(xiàng)式分解因式,對于形如ax2+bxy+cy2的關(guān)于x,y的二次三項(xiàng)式來說,方法的關(guān)鍵是把x2項(xiàng)系數(shù)a分解成兩個因數(shù)a1,a2的積,即a=a1a2,把y2項(xiàng)系數(shù)c分解成兩個因數(shù)c1,c2的積,即c=c1c2,并使a1c2+a2c1正好等于xy項(xiàng)的系數(shù)b,那么可以直接寫成結(jié)果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).
例:分解因式:x2﹣2xy﹣8y2.
解:如圖1,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×2+1×(﹣4).
∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)
而對于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法來分解,如圖2,將a分解成mn乘積作為一列,c分解成pq乘積作為第二列,f分解成jk乘積作為第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都滿足十字相乘規(guī)則,則原式=(mx+py+j)(nx+qy+k);
例:分解因式:x2+2xy﹣3y2+3x+y+2
解:如圖3,其中1=1×1,﹣3=(﹣1)×3,2=1×2;
而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;
∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)
請同學(xué)們通過閱讀上述材料,完成下列問題:
(1)分解因式:
①6x2﹣17xy+12y2=
②2x2﹣xy﹣6y2+2x+17y﹣12=
③x2﹣xy﹣6y2+2x﹣6y=
(2)若關(guān)于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成兩個一次因式的積,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,這是一個供滑板愛好者使用的型池的示意圖,該型池可以看成是長方體去掉一個“半圓柱”而成,中間可供滑行部分的截面是直徑為的半圓,其邊緣,點(diǎn)在上,,一滑板愛好者從點(diǎn)滑到點(diǎn),則他滑行的最短距離約為_________.(邊緣部分的厚度忽略不計)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機(jī)分選游戲雙方的組員,主持人設(shè)計了以下游戲:用不透明的白布包住三根顏色長短相同的細(xì)繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細(xì)繩,并拉出,若兩人選中同一根細(xì)繩,則兩人同隊,否則互為反方隊員.
(1)若甲嘉賓從中任意選擇一根細(xì)繩拉出,求他恰好抽出細(xì)繩AA1的概率;
(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(4,6),點(diǎn)P為線段OA上一動點(diǎn)(與點(diǎn)O、A不重合),連接CP,過點(diǎn)P作PE⊥CP交AB于點(diǎn)D,且PE=PC,過點(diǎn)P作PF⊥OP且PF=PO(點(diǎn)F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.
(1)直接寫出點(diǎn)E的坐標(biāo)(用含t的代數(shù)式表示):_____;
(2)四邊形BFDE的面積記為S,當(dāng)t為何值時,S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com