【題目】如圖,點P在以AB為直徑的半圓內(nèi),連接AP、BP,并延長分別交半圓于點C、D,連接AD、BC并延長交于點F,作直線PF,下列說法一定正確的是( ) ①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.
A.①③
B.①④
C.②④
D.③④
【答案】D
【解析】證明:①∵AB為直徑, ∴∠ACB=90°,
∴AC垂直BF,但不能得出AC平分BF,
故①錯誤,
②如圖1,連結(jié)CD,
∵AB為直徑,
∴∠ADB=90°,
∴∠BDF=90°,
假設(shè)AC平分∠BAF成立,則有DC=BC,
∴在RT△FDB中,DC=BC=FC,
∴AC⊥BF,且平分BF,
∴AC垂直BF,但不能得出AC平分BF,與①中的AC垂直BF,但不能得出AC平分BF相矛盾,
故②錯誤,
③如圖2:
∵AB為直徑,
∴∠ACB=90°,∠ADB=90°,
∴D、P、C、F四點共圓,
∴∠CFP和∠CDB都對應 ,
∴∠CFP=∠CDB,
∵∠CDB=∠CAB,
∴∠CFP=∠CAB,
又∵∠FPC=∠APM,
∴△AMP∽△FCP,
∠ACF=90°,
∴∠AMP=90°,
∴FP⊥AB,
故③正確,
④∵AB為直徑,
∴∠ADB=90°,
∴BD⊥AF.
故④正確,
綜上所述只有③④正確.
故選:D.
【考點精析】本題主要考查了圓周角定理的相關(guān)知識點,需要掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】解方程:
(1)x2﹣6x﹣16=0
(2)(x﹣3)2=3x(x﹣3)
(3)(x+3)(x﹣2)=50
(4)(2x+1)2+3(2x+1)+2=0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在四邊形ABCD中,∠A=90°,AD=6,AB=8,BC=26,CD=24
(1)求四邊形ABCD的面積.
(2)求D到BC的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O為△ABC的內(nèi)切圓.
(1)求⊙O的半徑;
(2)點P從點B沿邊BA向點A以1cm/s的速度勻速運動,以P為圓心,PB長為半徑作圓,設(shè)點P運動的時間為t s,若⊙P與⊙O相切,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于點D,BD=CD,若BC=5,AD=4,則圖中陰影部分的面積為................... ................... ................... ....... .......... ..... .......... ..... ( )
A. 5 B. 10 C. 15 D. 20
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)以下10個乘積,回答問題:
;;;;;
;;;;;
(1)試將以上各乘積分別寫成一個平方差的形式,并寫出其中一個的思考過程
(2)將以上10個乘積按照從小到大排列起來
(3)若用,,,....,表示n個乘積,其中為正數(shù),試由(1)(2)猜測一個一般性的結(jié)論。(不要求寫證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小林在某商店購買商品A、B共三次,只有一次購買時,商品A、B同時打折,其余兩次均按標價購買,三次購買商品A、B的數(shù)量和費用如下表:
購買商品A的數(shù)量(個) | 購買商品B的數(shù)量(個) | 購買總費用(元) | |
第一次購物 | 6 | 5 | 1140 |
第二次購物 | 3 | 7 | 1110 |
第三次購物 | 9 | 8 | 1062 |
(1)小林以折扣價購買商品A、B是第次購物;
(2)求出商品A、B的標價;
(3)若商品A、B的折扣相同,問商店是打幾折出售這兩種商品的?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形OABC頂點B的坐標為(8,3),定點D的坐標為(12,0),動點P從點O出發(fā),以每秒2個單位長度的速度沿x軸的正方向勻速運動,動點Q從點D出發(fā),以每秒1個單位長度的速度沿x軸的負方向勻速運動,PQ兩點同時運動,相遇時停止.在運動過程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設(shè)運動時間為t秒.
(1)當t=時,△PQR的邊QR經(jīng)過點B;
(2)設(shè)△PQR和矩形OABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)如圖2,過定點E(5,0)作EF⊥BC,垂足為F,當△PQR的頂點R落在矩形OABC的內(nèi)部時,過點R作x軸、y軸的平行線,分別交EF、BC于點M、N,若∠MAN=45°,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=BC,∠ABC=120°,將△ABC繞點B逆時針旋轉(zhuǎn)α,其中0°<α<90°得△A1BC1 , A1B交AC與點E,A1C1分別交AC、BC于D、F兩點.
(1)在旋轉(zhuǎn)過程中,線段EA1與FC有怎樣的數(shù)量關(guān)系?證明你的結(jié)論;
(2)當α=30°時,試判斷四邊形BC1DA的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com