【題目】RtABC中,∠ABC=90°,以AB為直徑作⊙OAC邊于點D,E是邊BC的中點,連接DE,OD.

(Ⅰ)如圖①,求∠ODE的大;

(Ⅱ)如圖②,連接OCDE于點F,若OF=CF,求∠A的大。

【答案】(Ⅰ)90°;(Ⅱ)45°

【解析】分析:)連接OE,BD利用全等三角形的判定和性質(zhì)解答即可;

)利用中位線的判定和定理解答即可.

詳解:()連接OE,BD

AB是⊙O的直徑,∴∠ADB=90°,∴∠CDB=90°.

E點是BC的中點,DE=BC=BE

OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=OBE

∵∠ABC=90°,∴∠ODE=90°;

CF=OFCE=EB,FE是△COB的中位線,FEOB∴∠AOD=ODE,由()得∠ODE=90°,∴∠AOD=90°.

OA=OD∴∠A=ADO=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一茶葉專賣店經(jīng)銷某種品牌的茶葉,該茶葉的成本價是80元/kg,銷售單價不低于120元/kg.且不高于180元/kg,經(jīng)銷一段時間后得到如下數(shù)據(jù):

銷售單價x(元/kg)

120

130

180

每天銷量y(kg)

100

95

70

設y與x的關(guān)系是我們所學過的某一種函數(shù)關(guān)系.

(1)直接寫出y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;

(2)當銷售單價為多少時,銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形是平行四邊形,要使它成為菱形,那么需要添加的條件可以是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,D、E分別是AB,AC的中點,作∠B的角平分線

(1)如圖1,若∠B的平分線恰好經(jīng)過點E,猜想△ABC是怎樣的特殊三角形,并說明理由;

(2)如圖2,若∠B的平分線交線段DE于點F,已知AB=8,BC=10,求EF的長度;

(3)若∠B的平分線交直線DE于點F,直接寫出AB、BC、EF三者之間的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C,D均在格點上,ABCD相交于點E.

(Ⅰ)AB的長等于   ;

(Ⅱ)點F是線段DE的中點,在線段BF上有一點P,滿足,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】來自某綜合市場財務部的報告表明,商場201414月份的投資總額一共是2065萬元,商場2014年第一季度每月利潤統(tǒng)計圖和201414月份利潤率統(tǒng)計圖如下(利潤率=利潤÷投資金額).則商場20144月份利潤是__萬元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于的方程有兩個不相等的實數(shù)根,

的取值范圍.

是否存在實數(shù),使方程的兩實數(shù)根互為相反數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△COD是△AOB繞點O順時針方向旋轉(zhuǎn)40°后所得的圖形,點C恰好在AB上,∠AOD=90°,則∠D的度數(shù)是__________°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點MCD的中點,動點E從點B出發(fā),沿BC運動,到點C時停止運動,速度為每秒1個長度單位;動點F從點M出發(fā),沿M→D→A遠動,速度也為每秒1個長度單位:動點G從點D出發(fā),沿DA運動,速度為每秒2個長度單位,到點A后沿AD返回,返回時速度為每秒1個長度單位,三個點的運動同時開始,同時結(jié)束.設點E的運動時間為x,△EFG的面積為y,下列能表示yx的函數(shù)關(guān)系的圖象是( 。

A. B.

C. D.

查看答案和解析>>

同步練習冊答案