如圖,在△ABC中,AD是∠BAC的平分線,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F.
求證:AD⊥EF.
分析:根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得DE=DF,再根據(jù)等角的余角相等可得∠EDO=∠FDO,然后根據(jù)等腰三角形三線合一的性質(zhì)可得DO⊥EF,從而得到AD⊥EF.
解答:證明:∵AD是∠BAC的平分線,DE⊥AB,DF⊥AC,
∴DE=DF,∠EDO=∠FDO,
在△DEF中,DE=DF,∠EDO=∠FDO,
∴DO⊥EF,
∴AD⊥EF.
點(diǎn)評(píng):本題考查了角平分線上的點(diǎn)到角的兩邊的距離相等等的性質(zhì),等腰三角形三線合一的性質(zhì),熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案