【題目】如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABC繞A逆時針方向旋轉(zhuǎn)40°得到△ADE,點B經(jīng)過的路徑為弧BD,是圖中陰影部分的面積為( 。
A. π﹣6 B. π C. π﹣3 D. +π
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A是反比例函數(shù)y=的圖象在第一象限上的動點,連結(jié)AO并延長交另一分支于點B,以AB為邊作等邊△ABC使點C落在第二象限,且邊BC交x軸于點D,若△ACD與△ABD的面積之比為1:2,則點C的坐標(biāo)為( 。
A. (﹣3,2) B. (﹣5,) C. (﹣6,) D. (﹣3,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料
勾股定理神秘而美妙,它的證法多種多樣,下面是教材中介紹的一種拼圖證明勾股定理的方法.
先做四個全等的直角三角形,設(shè)它們的兩條直角邊分別為a,b,斜邊為c,然后按圖1的方法將它們擺成正方形.
由圖1可以得到,
整理,得.
所以.
如果把圖1中的四個全等的直角三角形擺成圖2所示的正方形,
請你參照上述證明勾股定理的方法,完成下面的填空:
由圖2可以得到 ,
整理,得 ,
所以 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=8,AC=4,D是AB邊上一點,P是優(yōu)弧的中點,連接PA,PB,PC,PD,當(dāng)BD的長度為多少時,△PAD是以AD為底邊的等腰三角形?并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長是4,點E是AB邊上一動點,連接CE,過點B作BG⊥CE于點G,點P是AB邊上另一動點,則PD+PG的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=120°,OP平分∠AOB,且OP=2.若點M,N分別在OA,OB上,且△PMN為等邊三角形,則滿足上述條件的△PMN有( )
A.1個B.2個C.3個D.3個以上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC中,∠B、∠C平分線交于O點,過O點作EF∥BC交AB、AC于E、F.
(1)猜想:EF與BE、CF之間有怎樣的關(guān)系并說明理由
(2)如圖②,若△ABC中∠B的平分線BE與三角形外角∠ACD平分線CE交于E,且AE∥BC,AE=13,BC=24.求四邊形ABCE周長和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在處,交AD于點E.
(1)試判斷△BDE的形狀,并說明理由;
(2)若,,求△BDE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com